

Rosario Pignatello

NANO-i – Research Centre for Ocular Nanotechnology Department of Drug Sciences Università degli Studi di Catania

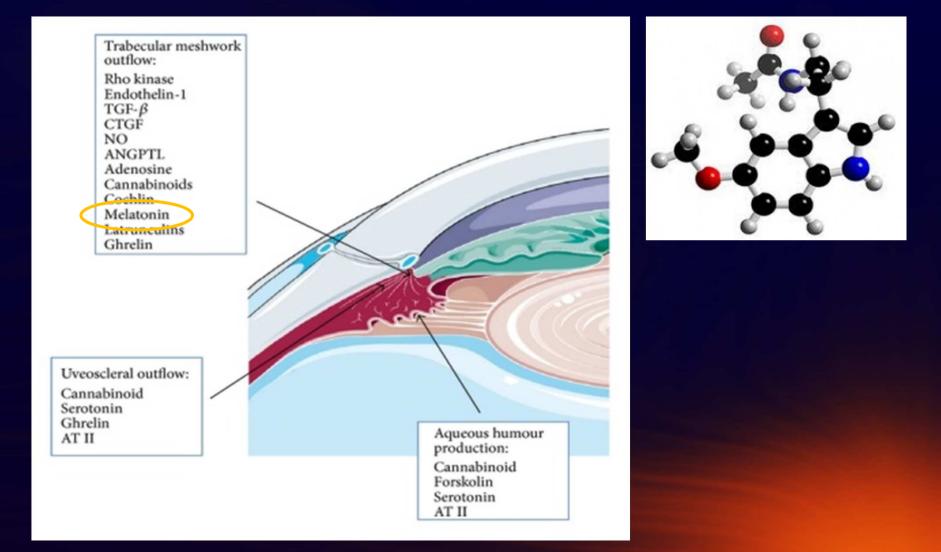
Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits

r.pignatello@unict.it

Alternative strategies for eye treatment

- \Rightarrow bioadesive hydrogels
- \Rightarrow *in situ* gel forming biomaterials
- \Rightarrow vesicular nanocarriers
- ⇒ polymeric nanoparticles
- \Rightarrow lipid-based nanocarriers (NLC, SLN)
- \Rightarrow inserts
- \Rightarrow cyclodextrins
- \Rightarrow micro/nano-emulsions
- \Rightarrow high-viscosity fluids

Advantages of ocular DDS


Mucoadhesion
Prolonged drug release
Enhanced drug absorption
Side-effects reduction
Ocular clearance lowering

The new NANO-*i* Research Center is proposing to perform basic and industry-oriented researches in the field of controlled/targeted ocular drug delivery



new therapeutic targets for glaucoma

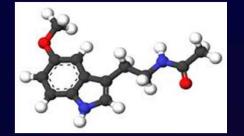
Rocha-Sousa et al., ISRN Ophthalmology, 2013 5

Bucolo et al., Curr Opin Pharmacol., 2013

MEL receptors MT₁ and MT₂ are distributed in the cornea, choroid, sclera, photoreceptors, RGCs and retinal blood vessels.

MT₁ receptors have been identified in the corneal epithelium, stroma, sclera, and endothelium of *Xenopus* eyes.

Three types of melatonin receptors, namely Mel_{1a} (MT₁), Mel_{1b} (MT₂) and Mel_{1c} are localized in the retina.


In the eye, locally synthesized melatonin has been associated different actions:

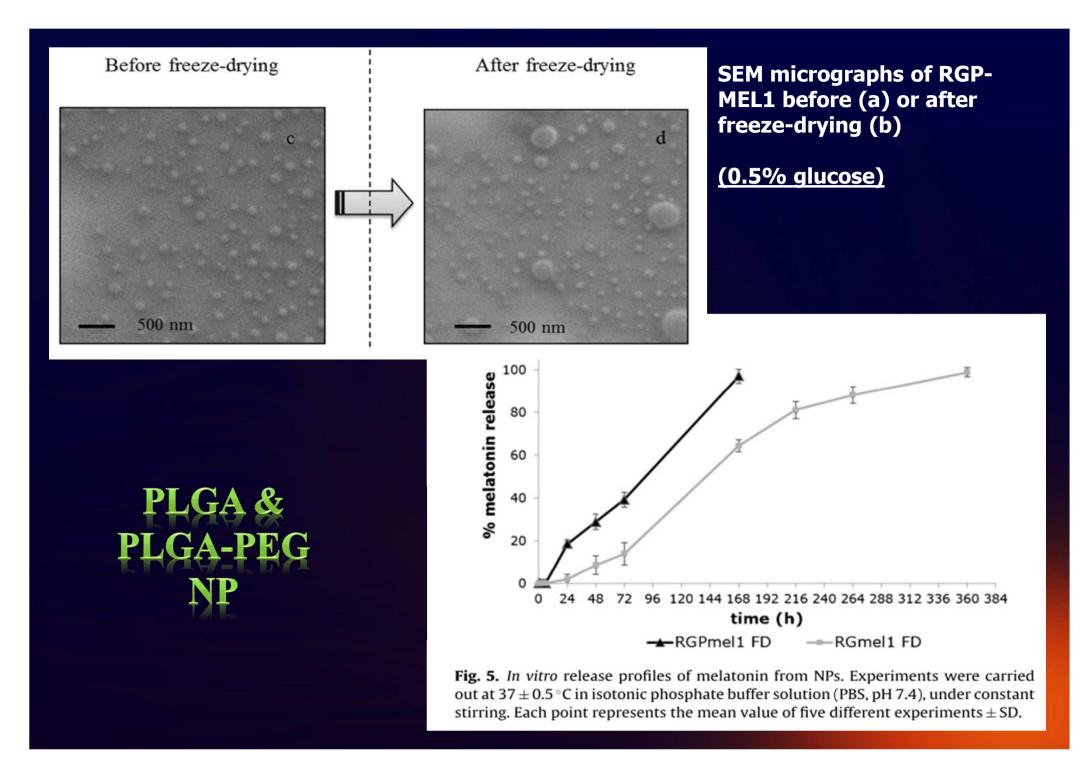
 regulate retinomotor movements •rod outer segment disc shedding dopamine synthesis and release differential regulation of the growth and remodeling of fibrous and cartilaginous scleral layers aqueous humor secretion & circadian control of IOP antioxidant effect (free radical scavenger) protect photoreceptor outer segment membranes from light-induced free radical attack.

- A study revealed that <u>KO mice</u> <u>for MT1 receptors</u> had higher IOP levels during the nocturnal hours than controls or KO mice for MT2 receptors at 3 and 12 months of age.
- Administration of exogenous melatonin significantly reduced IOP levels in wild-type mice, but not in the MT1 knock-out mice.

the studied nanocarriers:

PLGA & PLGA-PEG NANOPARTICLES

SOLID LIPID NANOPARTICLES (SLN)



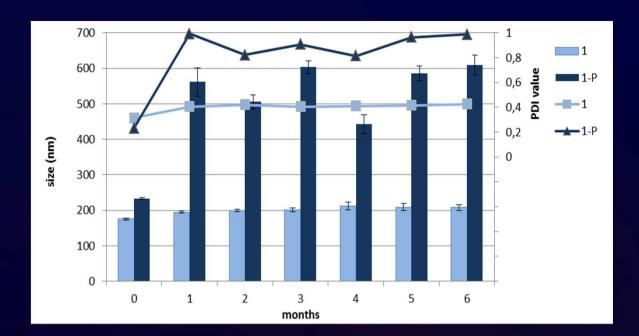
PLGA & PLGA-PEG NANOPARTICLES

were produced using a solvent displacement technique at various MEL concs. (1, 3, 5% by weight)

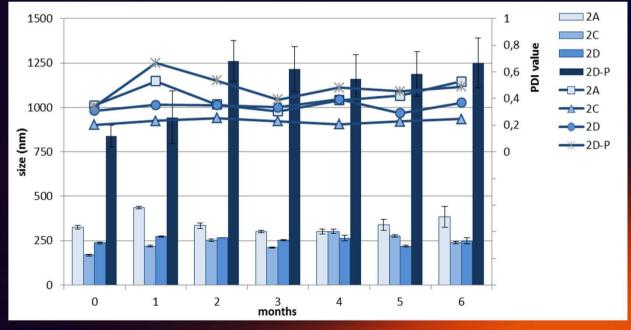
> mean size: **50-300 nm** Zeta potential: -35 mV / -8 mV

possibility of - freeze-dryingsterilization

by a lab-developed <u>QESD technique</u> (Quasi-emulsion Solvent Diffusion)


formulation variables: DDAB, palmitic or stearic acids

mean size: **150-300 nm** Zeta potential up to **+60 mV**


sterilizable (by autoclave or filtration)

QESD features:

- ✓ Low working temperatures
- \checkmark No or low surfactant concentration
- ✓ ICH Class 3 solvents

Mean size and PDI changes upon storage of cSLN at 4 °C.

Ocular tolerability

Modified Draize test (Bucolo et al., 2004)

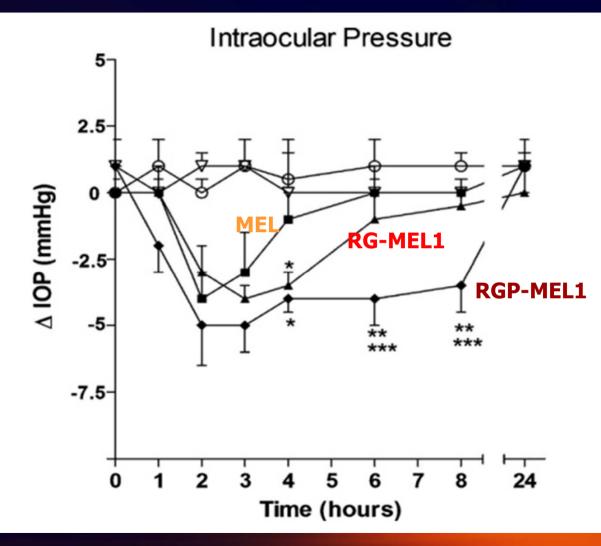
The tested nanocarriers did not cause ocular inflammation or tissue alteration in the rabbit eye.

Scores for conjunctival congestion, swelling and discharge were <u>zero</u> for all the experiments, except than congestion at 10 min (score 1).

Iris hyperemia and corneal opacity scores were also <u>nil</u> in all the observations.

In vivo assays

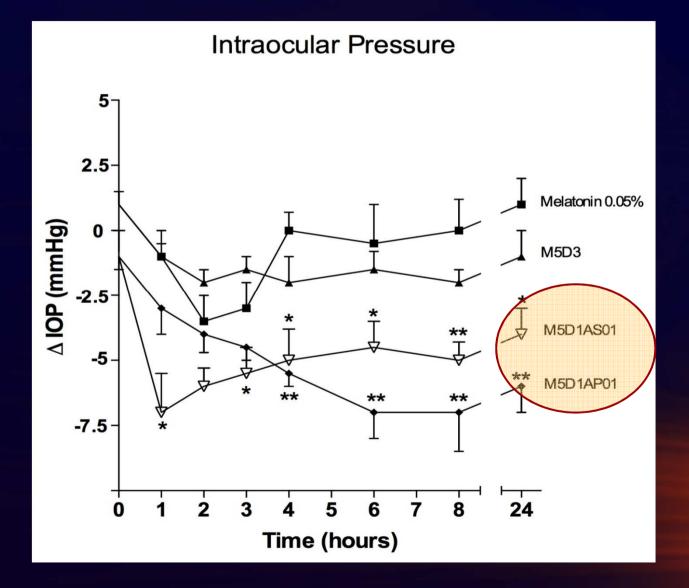
Intraocular pressure was measured in male New Zealand albino rabbits, using a Tono-Pen XL tonometer (Mentor; Norwell, MA) calibrated according to the manufacturer's instruction.


Before tonometry, 10 µL of 0.4% oxybuprocaine hydrochloride was applied to the corneas to minimize any discomfort to the animal.

Intraocular pressure in normotensive rabbit eyes after instillation of a MEL aqueous solution (\Box) or NPs: RG (\circ), RGP (∇), RG-MEL1 (\triangle), RGP-MEL1 (\blacklozenge).

topical

*p < 0.01, **p < 0.001 vs. MEL


***p < 0.001 vs. RGP-MEL1

IOP in normotensive rabbit eyes after topical instillation of MEL aqueous solution (\Box) or MEL-loaded SLN: RGP (∇), RG-MEL1 (\triangle), RGP-MEL1 (•).

*p < 0.05, **p < 0.01 vs. MEL

Conclusions - I

Melatonin can be efficaciously encapsulated in polymeric or lipid nanoparticles, showing good technological properties and stability.

Conclusions - II

Plain as well as drug-loaded nanoparticle suspensions showed a complete ocular tolerability in rabbit.

Conclusions - III

In vivo, both SLN and polymeric NPs ensured an activity comparable or higher than MEL eye-drops, but with a much longer duration of

the IOP-reducing effect.

Conclusions - IV

The positive technological features (like the possibility to sterilize or freeze-dry) are interesting for a further optimization of these nanotech formulations.

Credits

G. PuglisiT. MusumeciA. Leonardi

Dept. of Drug Sciences, Catania F. DragoC. Bucolo

Dept. of Clinical and Molecular Biomedicine, Catania