

European Frontiers in Ocular Pharmacology

Catania January 15,2015

« IMMUNOREGULATION & PERSONALIZED IMMUNOGENETICS » FROM HLA TO REGENERATIVE THERAPY

Dominique CHARRON MD, PhD

« JEAN DAUSSET » LABORATORY HISTOCOMPATIBILITY – IMMUNOGENETICS Paris – France

dominique.charron@sls.aphp.fr

HLA, IMMUNOGENETICS & MEDICINE

XX th Century

HLA, MHC ,Cytokines,Receptors.... ...TRANSPLANTATION, AUTOIMMUNITY,INFECTIONS

XXI st Century

HLA & MEDICINE (Schizophrenia/Parkinson ...) IMMUNO PHARMACOGENETICS (Abacavir/Carbamazepin ,Allopurinol...) REGENERATIVE MEDICINE/CELL & IMMUNO THERAPIES

TOWARDS

«SYSTEM BIOLOGY/ PERSONALIZED SYSTEM MEDICINE »

MHC / HLA

Tel
HCGIVITI (11)
HIGH (PP)
3.8-1.8 (92)
HIGGINATO (PP)
PR-18 (P) HOOMAG (P)
HLAHOO (PP)
HIGGIN-B (PP)
HCCONV.6 (192)
E HLAS
3.0-1.4 (92)
P5-10 (%) HCGIV-7 (%)
E P8-7 (P) HLA-18 (P)
3.8-1.3 (92)
HCGING
L HLA-70
HCGIV-6 (PP)
HIGGINA (HP)
110Gil-8 (17)
HCGRIXIA
- P6-2 (*P)
ET HLA-59 (P)
E HCGVII
EHeav Classical
ZNFDZ CIASSI
GT267
HOGII-6 CP3
MIGO (P)
TCA
E HSRI
ABCSO
PROAtion (PP)
BPLZA (P)
FLOTALIN
DDB
PC88
NOB4 (97)
HIGGENILSE (1P)
C HLAG
KIAAOOSS-hom (*P)
FREEdam-1 (PP)
DEPEND (197)
C5-0 (P)
NOB2 (P)
HICKEN (HP)
MIRAS (m)
P15-1 3-8-1-1

HLA DIVERSITY=BIOLOGICAL SELF=PERSONALIZED MEDICINE

1958 MAC first allele HLA-A2 1970's 20 to 50 alleles(serology)

<u>2014</u> : >10 000 ALLELES A,B,C,DR,DQ,DP(dna typing)

NGS

WE ARE THE LIMIT Population Genetics Worldwide

XXI Century HLA, MHC AND MUCH MORE.....TRANSPLANTATION, AID AND MUCH MORE

IMMUNOPHARMACOGENETICS REGENERATIVE MEDICINE SYSTEMS BIOLOGY

HLA HISTO-INCOMPATIBILITY/ALLOGENICITY IN TRANSPLANTATION

XXth century

T CELL MEDIATED : REJECTION (ORGANS)& GVH/GVL(HSCT)

HLA MATCHING - HLA TYPING

HLA-A+B+DR Mismatches Deceased Donor, First Kidney Transplants 1985-2006

K-21103-0208

BMT SURVIVAL according to the Number of HLA DISPARITIES

Kaplan-Meier probability of survival of the 14th IHWG HCT recipients according to 0, 1, 2 or 3 or more HLA disparities at HLA-A, B, C, DRB1 and DQB1.

HLA HISTO-INCOMPATIBILITY/ALLOGENICITY IN TRANSPLANTATION

XXIth CHANGE OF PARADIGM

ANTI HLA ANTIBODY MEDIATED:

VASCULAR REJECTION(ORGANS) & NO ENGRAFTMENT (HSCT)

Anti HLA AB Detection & Characterisation (DSA)

Antibody-mediated vascular rejection of kidney allografts:a population-based study

Carmen Lefaucheur*, Alexandre Loupy*, Dewi Vernerey, Jean-Paul Duong-Van-Huyen, Caroline Suberbielle, Dany Anglicheau, Jérôme Vérine, Thibaut Beuscart

, Dominique Nochy, Patrick Bruneval, Dominique. J. Charron , Michel Delahousse, Jean-Philippe Empana, Gary S Hill, Denis Glotz, Christophe Legendre, Xavier Jouven

LANCET Nov 23,2012

Population based study

2079 patients(nck/sls)+ 602validation samples(foch) 302 biopsy proven rejection (1998-2008) CINICAL, HISTO PATHOLOGICAL(including C4d)& IMMUNOLOGICAL(DSA) DATA

Hierarchical cluster analysis/ unsupervised principal component

4 patterns of rejection

TCMR/V+ :T cell mediated rejection (26 = 9 $^{\circ}$ / $^{\circ}$)

ABMR/V+ :Antibody mediated rejection($64 = 21^{\circ} /^{\circ}$)

TCMR/V- : T cell mediated rejection without vasculitis(139 = 46° /°)

ABMR/V- : Antibody mediated rejection without vasculitis($73 = 24^{\circ} /^{\circ}$)

PATHOLOGICAL & IMMUNOLOGICAL PHENOTYPES DISTRIBUTION OF THE 4 REJECTION PATTERNS

Cellular (Tcell) Rejection

Antibody Mediated Rejection

Endarteritis --

Endarteritis +

Figure 2: Identification of four distinct rejection patterns according to clinical, histological, and Immunological variables

The unsupervised principal component analysis examined kidney recipients with acute biopsy-proven rejection with seven variables: glomerulitis, peritubular capillaritis, donor-specific anti-HLA antibodies, C4d deposition, intentitial inflammation, tobolitis, and endertaritis. The horizontal axis opposes cellular rejection (intentitial inflammation and tubulitis) and antibody-mediated rejection (clonor-specific anti-HLA antibodies, glomerulitis, peritubular capillaritis and C4d), as recognised by the international Banff classification. The vertical axis defines the presence or absence of lesions of endartaritis (appendix).

GRAFT SURVIVAL IN THE 4 REJECTION PHENOTYPES

Figure 3: Kaplan-Meier curves for kidney graft survival by acute rejection phenotype

Initial diagnoses as per (A) Banff classifications and (B) our new approach. Graft survival in patients without rejection is purely illustrative; graft survival in these

Complement-Binding Anti-HLA Antibodies and Kidney-Allograft Survival

Alexandre Loupy, M.D., Ph.D., Carmen Lefaucheur, M.D., Ph.D., Dewi Vernerey, M.P.H., Christof Prugger, M.D.,
Jean-Paul Duong van Huyen, M.D., Ph.D., Nuala Mooney, Ph.D., Caroline Suberbielle, M.D., Ph.D., Véronique Frémeaux-Bacchi, M.D., Ph.D., Arnaud Méjean, M.D., François Desgrandchamps, M.D.,Dany Anglicheau, M.D., Ph.D., Dominique Nochy, M.D.,
Dominique Charron, M.D., Ph.D., Jean-Philippe Empana, M.D., Ph.D., Michel Delahousse, M.D., Christophe Legendre, M.D., Denis Glotz, M.D., Ph.D., Gary S. Hill, M.D.,* Adriana Zeevi,

Ph.D., and Xavier Jouven, M.D., Ph.D.

• NEJM 2013 september 26

KYDNEY TRANSPLANTS 5 Year Graft Survival

- 1016 patients from 01/2005 to 01/2011 All cross match – (CDC IGg T& B cells)
- C1q + DSA + (77) 54 ° /°
- C1q DSA + (239) 93 ° /°
- C1q DSA (700) 94 ° /° (p<0.001)

C1q + correlates with AMVR, microvascular inflammation & C4d deposition

SCIENCE DIRECT.

Immunogenetics today: HLA, MHC and much more Editorial overview Dominique Charron

Current Opinion in Immunology 2005, 17:493-497

This review comes from a themed issue on Immunogenetics Edited by Dominique Charron

Available online 8th August 2005

0952-7915/\$ - see front matter © 2005 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.col.2005.07.007

HLA, MHC AND MUCH MORE.... ...TRANSPLANTATION, AUTOIMMUNITY AND MUCH MORE

HLA in MEDICINE IMMUNOPHARMACOGENETICS REGENERATIVE MEDICINE SYSTEMS BIOLOGY

The human MHC: epicenter of disease association as determined by GWAS

Autoimmune Cancer Viral Bacterial Others

Type I diabetes Association analysis accross the MHC

HLA GWAS IN EYE DISEASES

- Acute Anterior Uveitis: + HLA B27
 IL23R, ERAP1, IL10, IL6R, ILR1 ...
- Birdshot Retinopathy : + HLA A29
 ERAP2...
- Behcet Disease : + HLA B51 ,B57 B35
 ERAP1,IL23R,IL10 ...

Towards System Biology - System Medicine

Association between Parkinson's disease and the HLA-DRB1 locus

Ismaïl Ahmed^{1,2}, Ryad Tamouza³, Marc Delord⁴, Rajagopal Krishnamoorthy⁵, Christophe Tzourio^{1,2}, Claire Mulot^{6,7}, Magali Nacfer^{6,7}, Jean-Charles Lambert⁸, Philippe Beaune^{6,9}, Pierre Laurent-Puig^{6,9}, Marie-Anne Loriot^{6,9}, Dominique Charron³, Alexis Elbaz^{1,2} Mov Disord 2012, 9 1104-10

Previous GWAS : association with DRA(non polymorphic) & DRB5

(gene present in only 20° /°)

THIS STUDY

2 population based case control (499/1123)studies of ethnically homogeneous PD

vs 51 HLA-DR region SNPs (logistic regression-permutation method) Imputation HLA* Imp software)

Rs 660895 DR B1 (OR 0.70 cP 0.01)

META ANALYSIS confirmation 7996 cases 36455 controls (OR: 0.85 P 0.0001) HLA typing (23 cases Rs 660895) = DRB1*O4

HLA AND MEDICINE

MAJOR PSYCHOSIS:SCHIZOPHRENIA(S)/BIPOLAR DISORDER (BD)

OF DISEASES NOT EXPECTED TO BE ORIGINALLY IMMUNE

IMMUNO PHARMACO

GENETICS

	genetics						
	Immuno	Pharmaco					
Environment External milieu	Foreign microbial pathogens	Foreign chemicals					
Evolutionnary forces fight against pathogenicity							
Genetic	Adaptative Immunity	Xenobiotic metabolizing enzyme					
Systems	↓ HLA-ABC / -DR/DQ/DP	CYP + GST, UGT					
Diversity	> 2000 alleles	e.g. CytP450 > 50					
На	Haplotypic organization - Population variability						

HLA

CYP

ABACAVIR ⇒ HSR (4 - 5%) HLA-B5701 (B5701, DR7, DQ3 haplotype) AUS + USA # But not in American Blacks +HSP70-Hom M493T variant (57.1 ancestral haplotype) (p< 0.0001) A.M Martin et al. PNAS 2004 NEVIRAPINE → HSR (4,9%) HLA-DRB1*0101(pc 0.001) Antiviral treatment → HLA-DRB1*13, -DQB1*06 Viral suppression and cellular immunity A.M Martin et al. AIDS 2005

Recent Associations -- SCAR and HLA Variants

Patients	Drugs	Diseases	SNPs	Odds etc.			
56 White	Carbamazepine	DIHS	HLA-B*1502	All neg.			
8 White	Carbamazepine	SJS/TEN	HLA-B*1502	All neg.			
4 Asian	Carbamazepine	SJS/TEN	HLA-B*1502	All pos.			
60 Han	Carbamazepine	SJS	HLA-B*1502	1357			
51 Han	Allopurinol	SCAR	HLA-B*5801	580			
31 White	Allopurinol	SJS/TEN	HLA-B*5801	80 (61%)			
3 Japanese Allopurinol SJS/TEN/DIHS HLA-B*5801 All po							
40 Japanese	Multiple	SJS/TEN	HLA-A*0206	5.5			
Genetic [HLA] marker variance across ethnicity & drug							

HLA

Immunogenetics Impact

(Susceptibillity)

Response to treatment

Biological Self

Therapeutic Self

HLA, MHC AND MUCH MORE.... ...TRANSPLANTATION, AUTOIMMUNITY AND MUCH MORE

HLA in MEDICINE IMMUNOPHARMACOGENETICS REGENERATIVE MEDICINE SYSTEMS BIOLOGY

STEM CELL THERAPIES FOR

REGENERATIVE MEDICINE

BENEFITS

PLURI / MULTIPOTENCY
SELF RENEWAL
IN VITRO SPECIFIC DIFFERENCIATION
IMMUNE PRIVILEGE ?

LIMITS OF IN VIVO ENGRAFTMENT AND FUNCTIONALITY

IMMUNOGENICITY/ALLOGENICITY/REJECTION/AUTOIMMUNITY ?
 DISPONIBILITY – TIMELINE
 AGING
 SAFETY
 ETHICAL – REGULATORY ISSUES

THE IMMUNITY FACTORS IN REGENERATIVE CELL THERAPIES

\triangleright	THE IMMUNOGENETIC FACTOR: ALLOGENICITY
	HLA, MHC and Much More
×	
	THE IMMUNE EFFECTORS: DIRECT VS INDIRECT PATHWAYS
	OF ALLO RECOGNITION
	Cells, Mediators and Allo Antibodies
	THE AGING FACTOR: IMMUNO SENESCENCE

Toward an IMMUNOLOGICALLY EDUCATED CHOICE OF SCs

ALLOGENEIC STEM CELLS ARE NOT IMMUNO PRIVILEGED

MHC EXPRESSION IMMUNOGENICITY INCREASES UPON DIFFERENCIATION

IN VIVO REJECTION

3 SUPPORTING PAPERS

CHARACTERIZATION OF THE EXPRESSION OF MHC PROTEINS IN HUMAN EMBRYONIC STEM CELLS

M. DRUKKER, G. KATZ, A. URBACH, M. SCHULDINER, G. MARKEL, J. ITSKOVITZ-ELDOR, B. REUBINOFF, O. MANDELBOIM, N. BENVENISTY

PNAS, 2002, 99:9864

Embryonic Stem Cell Immunogenicity Increases Upon Differentiation After Transplantation Into Ischemic Myocardium R-J Swijnenburg, M. Tanaka, H. Vogel, J. Baker,T. Kofidis, F. Gunawan, D.R. Lebl, A.D. Caffarelli, J.L. de Bruin, E.V. Fedoseyeva, R.C. Robbins

Circulation. 2005;112:I-166-I-172

Graft infiltration of immune cells after transplantation of *in vivo* differentiated ESCs

Cellular Composition of Graft Inflitrates Over Time After Intramyocardial ESC Injection

	1 Week*		2 Weeks*		4 Weeks*			8 Weeks*			2 Weeks After HTX†			
	Sham	Syn	Allo	Sham	Syn	Allo	Sharm	Syn	Allo	Sham	Syn	Alo	Sham	Allo
CDS	+/-	+	+	+/-	+	++	+/-	+	+++	+/-	+	+++	+/-	+++
CD4	+/-	+	+	+/-	+	++	+/-	+	+++	+!-	+/-	+++	+/-	+++
CD8	+/-	+/-	+/-	+/-	+/-	++	+/-	+/-	+++	+/-	+/-	+++	+/-	++
B220	+/-	+	+	+/-	+	++	+/-	+	++	_	+/-	+	+/-	+++
CD11c	+/-	+/-	+/-		+/-	+	_	+	++	_	+/-	++	_	+
Mac-1	++	++	++	++	+++	+++	+	++	+++	+	++	+++	++	+++
Gr-1	+	+	+	+	+	++	+	+	+++	+	+	++	+	+++

T cells

B cells

Immunosuppressive Therapy Mitigates Immunological Rejection of Human Embryonic Stem Cell Xenografts

R.J SWIJNENBURG, S. SCHREPFER, J.A. GOVAERT, F. CAO, K. RANSOHOFF, A.Y SHEIKH, M. HADDAD, A.J CONNOLLY, M.M DAVIS, R.C ROBBINS, J.C WU

PNAS, 2008,105:12991

THE 2014 IMMUNOLOGICAL CHALLENGE

2002 - 2010

Allogeneic ESCs are Immunogenic : alloimmunity

2010 - 2012

Reprogrammed iPSCs are immunogenic :autoimmunity

Gene Transduced cells are immunogenic: autoimmunity

>MSCs are immunogenic & Immunoregulatory

Toward an IMMUNOLOGICALLY EDUCATED CHOICE OF SC

Immune Cell Stem Cell

Endomyocardiac stem cells ?

IMMUNE PRIVILEGED vs IMMUNOGENICITY

Autologous

*unavailable

*limited disponibility Not over the shelf

Allogenic

*more available *less limited could be over the shelf

Human Cardiac-derived Stem/Progenitor Cells

Pluripotency (Oct4,Sox2,Nanog) /Stem (SSEA 1/4,CD 73/90 105/166) + Cardiac Lineage Markers (Mef2c, Nkx2.5,iIslet-1, GATA-4)

Promote cardiac repair Restore cardiac function

hCPC Cardiac differenciation potency(in vitro)

Cardiomyocytes Endothelial cells Smooth muscle cells

Lauden, L et al, Circ Res, 2013

Allogeneic Immunity : Cellular Responses

INDUCTION/TRIGGERING/EFFECTOR PHASE (REJECTION)

Co-stimulatory/Co-regulatory molecules on hCPC

0

Programmed Cell Death Ligand 1 (PD-L1)

From Butte MJ et al, Immunity, 2007

Expressed on leukocytes and non-hematopoietic cells in lymphoid and non-lymphoid tissues

Binding partner for PD-1 and B7-1 (CD80)

Exert vital and diverse range of immunoregulatory roles in T cell activation, tolerance, and immune-mediated tissue damage

Co-stimulate T cell proliferation and IL-10 secretion in response to polyclonal and allogenic stimuli

PD-L1/PD1 and PD-L1/B7-1 control engraftment of solid organs, including heart, and GVHD

Control regulatory T cell induction and expansion

Expression on non-hematopoietic donor cells is essential in acquired tolerance to fully allogenic vascularized cardiac grafts

PD-L1 orchestrates interactions of allogenic CPC with T cells

1) Allo-Treg generation

3) Immune-modulation(si RNA)

2) Allo-Treg expansion blockage(anti PD-L1)

4) IL-10 production inhibition(siRNA)

Lauden, L et al, Circ Res, 2013

Adaptative T cells Response against Allogeneic hCPC

Main findings:

hCSC

- Do not trigger a conventional allogeneic Th1 and Th2 response
- Trigger a PD-L1-dependent regulatory T cell response
- Have immunomodulatory capacities
- Low immune risk even within inflammatory environment
- Reparatory by promoting Treg and by controlling immunemediated injury
- PD-L1 immune-biomarker (identify & select low/risk allogenic cardiac repair cells)

PD-L1 expressing hCSC are attractive Low risk/high benefit cells for cardiac repair clinical translation

Allogeniciy of Human Cardiac Stem/Progenitor Cells Orchestrated by Programmed Death Ligand 1L Lauden, W Bouke Cardiaci, L R. Borlado, Itziar P. Lopez, Pilar Sepulveda, Ryad Tamouza, D Charron, R Al-Daccak, Cir Res 2013

Institut national de la sanké et de la recherche médicale

Susceptibility of cardiac progenitor cells to allogeneic NK cell lysis

Mechanisms of NK-mediated killing

NK optimum activity occurs upon priming by cytokines includingIL2, 48 IL15, IL12-18

Expression of NK receptors Ligands by hCPC and IFNγ-hCPC

Fluorescence intensity

- Both hCPC and IFNγ-hCPC might be susceptible to NK cell lysis
- Inflammatory conditions increase expression of ligands for inhibitory receptors

NK cell degranulation and cytotoxicity towards hCPC

Allogeneic co-cultures:

- CD107a expression by NK: marker of NK degranulation
- 7-AAD staining of hCPC: marker of cell death

- hCPC and IFNγ-hCPC are only susceptible to cytokine-activated NK lysis
- Inflammatory conditions protect hCPC against NK lysis

Implication of death receptors

- IFNγ treatment sensitizes hCPC to TRAIL-induced cell death
- hCPC are killed by NK cell through natural cytotoxicity

Engagement of NK cells in immune synapses with hCPC

NK form less conjugates and less polarized synapses with IFNγ-hCPC

Conclusions and Perspectives

1) hCPC are susceptible to NK cells killing but are not a prefered target

2) Inflammatory conditions sensitize to TRAIL-induced cell death but generally protect hCPC from NK-mediated lysis

- Less conjugates and less polarization
- Higher expression of ligands for NK-inhibitory receptors

3) Nkp46 is the main NK activating receptor responsible for hCPC lysi

ALLOGENEIC hCPC ENGAGE T & NK CELL PATHWAYS

Dominique Charron Reem Al Daccak

Laura Lauden Wahid Boukouaci Noemie Dam

Luis Borlado Pilar Sepulveda Itziar Palacios Coretherapix (Madrid, Spain)

Bernardo Nadal-Ginard Liverpool John Moores University (Liverpool, UK)

NOW THIS IS NOT THE END IT IS NOT EVEN THE BEGINNING OF THE END BUT IT IS PERHAPS, THE END OF THE BEGINNING

Impact of donor specific anti-HLA antibodies on graft failure & survival after reduced intensity conditioning regimen unrelated Cord Blood Transplantation .

A Eurocord, SFGM-TC and SFHI study

Dominique CHARRON laboratoire «Jean Dausset » Hopital Saint-Louis ; Paris

On behalf of

Annalisa Ruggeri, Vanderson Rocha, Emelyne Masson, Renato Cunha, Lena Absi, Ali Boudifa, Brigitte Coeffic,, Anne Devys, Muriel De Mattei, Valerie Dubois, Daniel Hanau, Francoise Hau, Isabelle Jollet, Dominique Masson, Beatrice Pedron, Pascale Perrier, Dominique Charron, Eliane Gluckman, Pascale Loiseau

Hematologica 2014

Patients Selection Criteria

- UCBT from 2000 to 2010
- Single and double UCBT, performed in France
- Reduced Intensity Conditioning regimen
- Availability of pre-transplant serum samples to evaluate DSA

		Immune Deficiency
Median Follow-up, months	36 (3- 98)	Tumor 1% BMFS 1% 14%
Children, n	60, 20%	Cell Acute Disorder 29%
Female gender, n	136, 46%	CLL/ Lymphon
Non malignant disease, n	50, 17%	197 ML 12%
Previous Auto-HSCT, n	112, 38%	

RESULTS

Neutrophil engraftment

- 78 % (median time : 20 days [13 60])
- 73 graft failure
 - 8 DSA (5 single, 3 double)
- Engraftment depending of Ab status:

- Multivariate analysis:
 - DSA before engraftment: only factor independently associated with engraftment (p=0,002, HR:1,69)
- Graft failure was associated with increased TRM and lower OS

Transplant-Related Mortality at 1-year

DISCUSSION – CONCLUSION CBT O The presence of DSA(HLA) is associated with delayed engraftment and graft failure

OTrend towards increased TRM and lower OS

ORole of Ab intensity

- Higher Ab Titer associated with lower engraftment
- Further studies (larger groups) to establish a threshold for CB selection

OCB selection:

• HLA compatibility, TNC anti-HLA Ab

Figure 1. Summary of the Association Between the HLA-DRA, DRB, and DQ Loci and PD. P-values for the 102 SNPs, derived from univariate logistic regression models (additive model), are presented on the left Y-axis on the logarithmic scale according to the position of the SNPs on chromosome 6 (X-axis). Each SNP is depicted by a dot whose colour reflects linkage disequilibrium estimates (r²) with the top SNP (rs660895 in purple); linkage disequilibrium estimates were calculated based on 1622 subjects included in the analysis. The correlation between rs660895 and other SNPs was low to moderate. The blue line represents the recombination rate (right Y-axis). The plot was produced with the LocusZoom software (29).

IFN-γ induction of MHC-I in human ES cells is dose and time dependent

2O10 DIFFERENCIATION OF ALLOGENEIC MESENCHYMAL STEM CELLS INDUCES IMMUNOGENICITY & LIMITS THEIR LONG-TERM BENEFITS FOR MYOCARDIAL REPAIR Xi-Ping Huang & coll Circulation .2010 ;122:2419-242

- Wistar and lewis rats
- MSCs untreated vs MSCs cultured with 5-azacytidine(to induce myogenic differentiation)
- Flow cytometric & mRNA evaluation of MHC Ia,II and CD86 is increased by >30% upon differentiation While MHC Ib is decreased
- -----GFP+ MSCs Implanted into the infarcted myocardium 3 weeks after MI express low level of MHC Ia when undifferenciated(alpha-SMA-) at day seven & high level of MHC Ia when differenciated(alpha-SMA+) at Day 14(differenciated)
- ----- Implanted Allogeneic MSCs induce a local immune reaction after 7 days and are not detected in situ after 5 weeks
- ------Allogeneic MSCs restore cardiac function as effectively as Syngeneic MSCs for 3 months but not 6 monts after implantation

While immunoprivileged in their undifferenciated state MSCs become immunogenic in vitro & in vivo when differenciated (biphasic immune response)

Cardiac Stem Cells

hCSC purified & expanded from cardiac samples

C-kit-positive cells Upon injection in experimental MI Regeneration (Brdu+ cells) Differentiation (3 lineages) Restoration (cardiac function) Beltrami, AP et al, Cell, 2003

Cardiac Stem Cells Therapy

Clinical trials using AUTOLOGOUS cells (Feasability/efficiency)

SCIPIO Bolli et al.Lancet.2011 CADUCEUS Makkar et al. Lancet.2012

ALLOGENIC cells are more REALISTIC

Immediate availability (off the shelf) Manufacturing Quality/Safety

IS ALLOGENICITY A BARRIER TO SUCESS ?

Experimental Interrogation

Allo-immune Response To Cardiac Stem/Progenitor Cells

Mechanisms involved in natural cytotoxicity

Use of blocking antibodies in cytotoxicity assays at 10:1 E:T ratio

Ligands for inhibitory NK receptors

- Nkp46 is the major NK activating receptor responsible for hCPC and IFNγ-hCPC lysis
- Blocking of HLA I on IFNγ-hCPC increases their susceptibility to NK cell lysis
- Increase of HLA I on IFNγ-hCPC could explain their resistance to NK killing

- In allogenic settings hCPC modulate NK cytokine-induced proliferation
- This modulation is more pronounced under inflammatory conditions

Modulation of NK cell cytotoxicity by hCPC

- hCPC modulate capacity of allogeneic NK to form conjugates with, to degranulate towards and to lyse a well-known target
- This modulation is cell-contact dependent and seems higher with IFNγ-hCPC.

Hôpital Saint-Louis

Immunogenetics/Immunology, INSERM U 940 Dominique Charron Wahid Boukouaci Meriem Bennabi Kahina Amokrane

Rajagopal Krishnamoorthy

Ryad Tamouza

Hôpital Henri Mondor

Dept of Psychiatry, MONDOR Marion Leboyer, Nora Hamdani, Aroldo Dargél, MA d'Albis, J Houenou, E LeGuen, S Sarrazin, R Doukan INSERM U 955

Bipolar Expert centres *Chantal Henry, Bruno Etain, Carole Boudebesse*

> fondation fondamental

Stanley foundation, Baltimore, US Bob Yolken and Faith Dickerson

Réseau de coopération scientifique en santé mentale