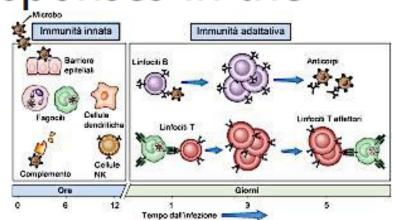
Giornate Catanesi di Nutrizione Clinica 10|11 Maggio 2019

«LA NUTRIZIONE E LA MALATTIA»

Farmaconutrizione nel paziente geriatrico immunodepresso

Pietro Vecchiarelli

What is Aging?



Complex transition that includes a physiological and cognitive vulnerability making the individual more prone to diseases and acute medical events, leading to further decrease in reserve capacities of functional indipendency and ultimately to death

Guidet et al. Ann. Intensive Care (2018) 8:114

Immune-inflammatory responses in the elderly: an update

Giulia Accardi^{1,2} and Calogero Caruso^{1,2*}

Immunosenescence: age related decline in immune function at the cellular and serological level.

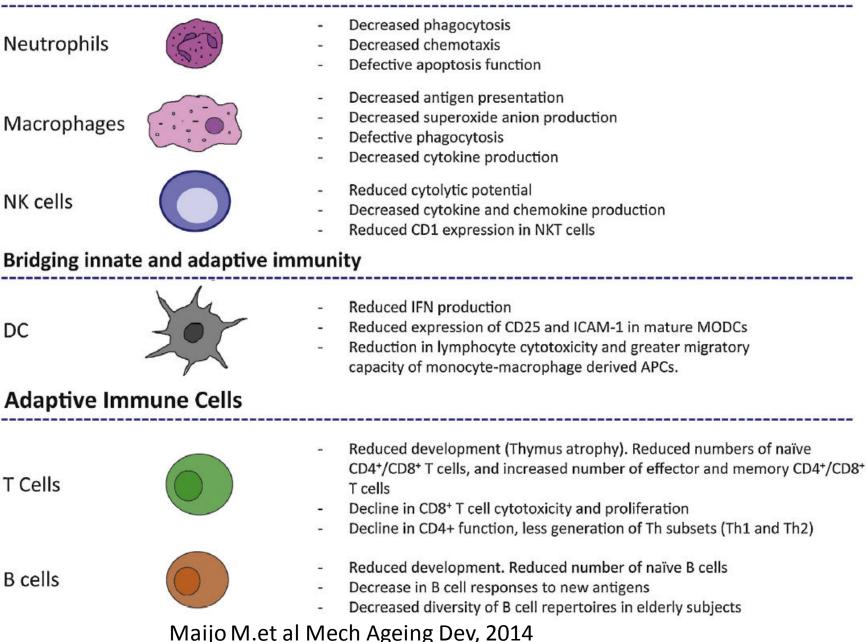
These changes lead to poor response to newly encountered microbial antigens, including vaccines, as well as to shift of the immune system towards an inflammatory, autoimmune profile.

This immune dysregulation provides the background for an increased susceptibility to autoimmune diseases, cancer, metabolic diseases, osteoporosis, neurological disorders, as well as allergic inflammation and infections.

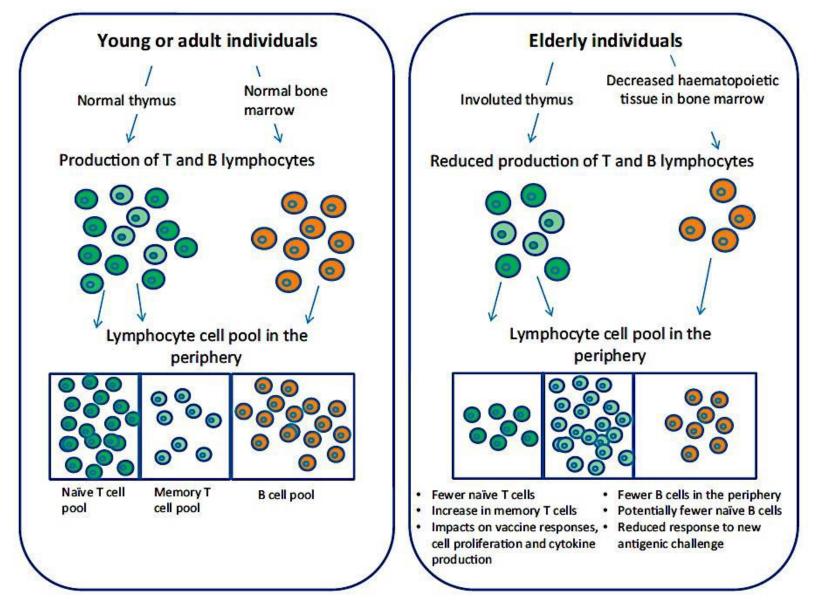
> Accardi and Caruso Immunity & Ageing (2018) 15:11 https://doi.org/10.1186/s12979-018-0117-8

ORIGINAL ARTICLE

Sicilian centenarian offspring are more resistant to immune ageing


Graziella Rubino^{1,2} · Matteo Bulati² · Anna Aiello² · Stefano Aprile² · Caterina Maria Gambino² · Francesco Gervasi³ · Calogero Caruso² · Giulia Accardi²

Received: 8 January 2018 / Accepted: 21 March 2018 © Springer International Publishing AG, part of Springer Nature 2018


The whole present data confirm and extend the previous results showing that centenarian offspring retain more youthful immunological parameters and that the exhaustion of the immune system is less evident than in elderly without centenarian parents [15, 39–43].

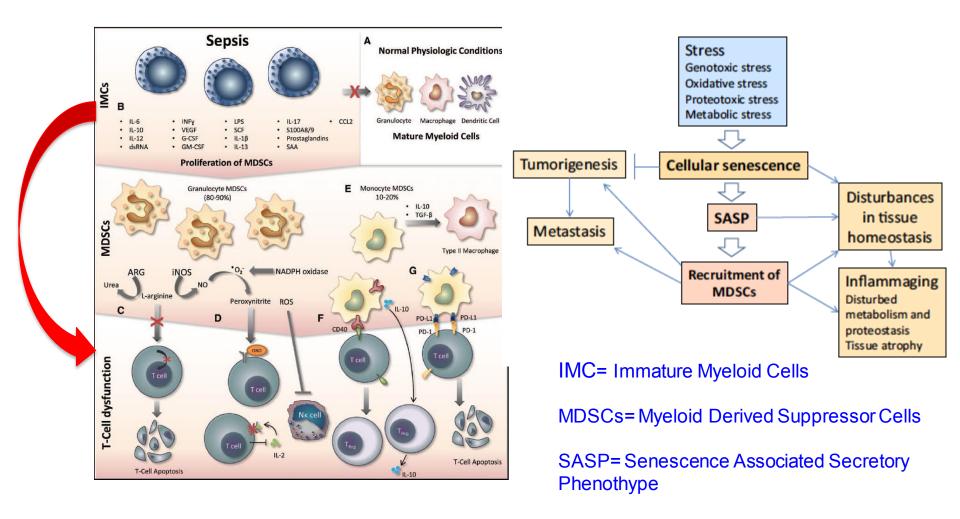
Innate Immune Cells

Age-Associated Changes

Effect of age on the production and distribution of lynphocytes

Maijo M.et al Mech Ageing Dev, 2014

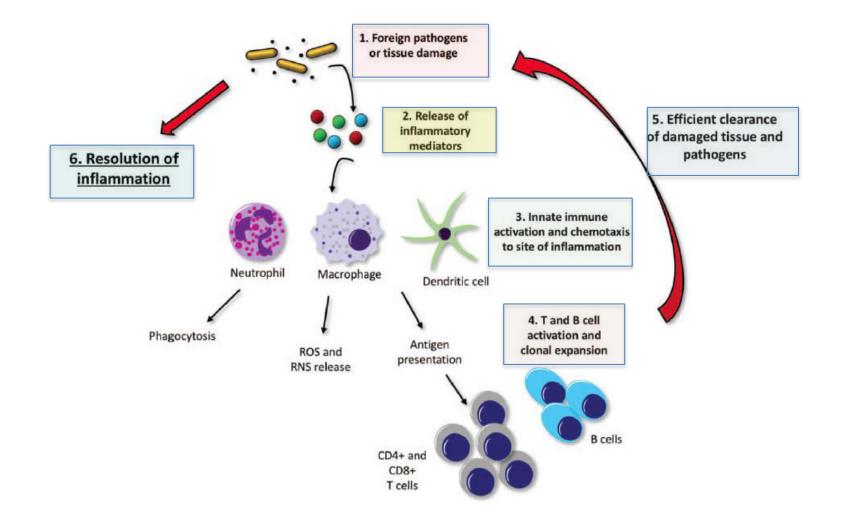
INFLAMM-AGING


Chronic, sterile, subclinical, low grade inflammation related to the ageing, produced as consequence of:

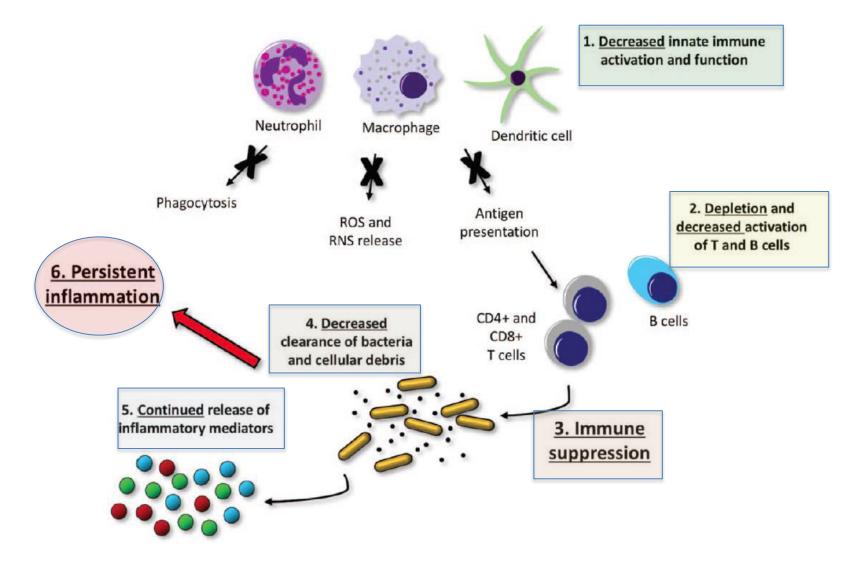
- Dysfunctional mitochondria;
- Defective autophagy;
- Endoplasmic reticulum stress;
- Activation of inflammasome by cells debris;
- Defective ubiquitin/proteasome system;
- Activation of DNA damage response;
- Senescent T cells;
- Age-related changes in the composition of microbiota (dysbiosis)

Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-kB-dependent mechanism Flores R et al. Aging Cell 2017

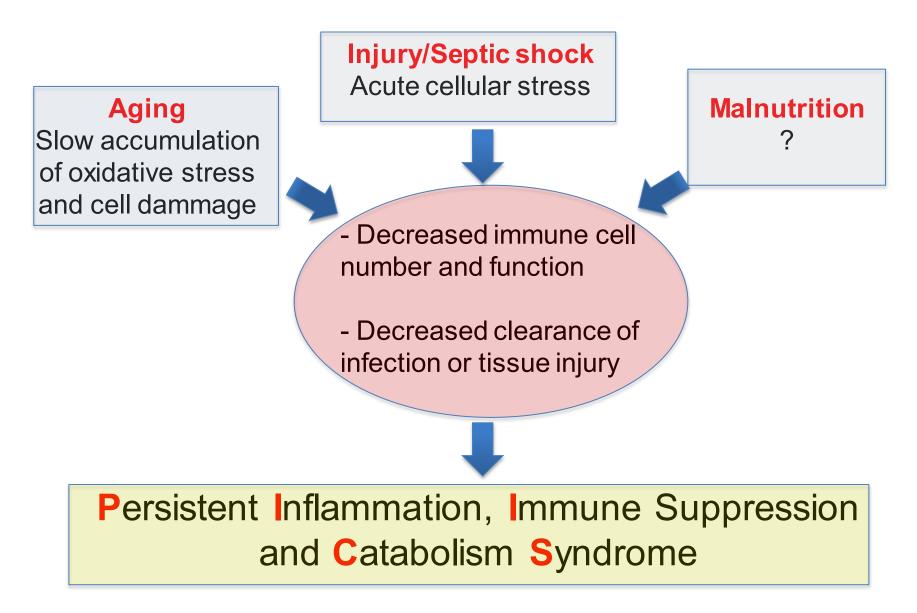
Although it has been demonstrated that the percent of MDSC as well as MDSC with NF- κ B activation increases with accelerated and natural aging, the role of the MDSC, if any, in the aging process is unclear. It is also unclear whether the expansion of MDSCs drives aging or only is a consequence of aging. However, given that MDSCs accumulate in the spleen, peripheral lymph nodes, bone marrow, and blood of normal aged mice and are significantly increased in the circulation of aged individuals, it is likely that MDSCs contribute to age-associated immune dysfunction. Similarly, the increase in MDSCs with aging could contribute to the increased risk of cancer.


Role of MDSCs

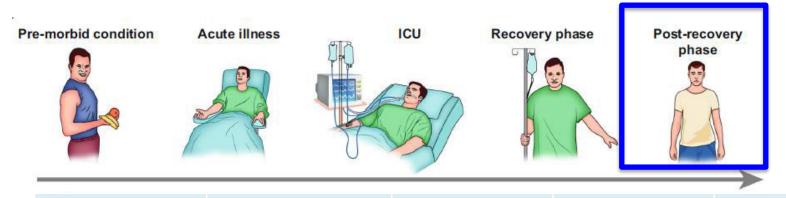
Mira JC et al. Crit Care Med 2017


Salminen A et al Biogerontology, 2018

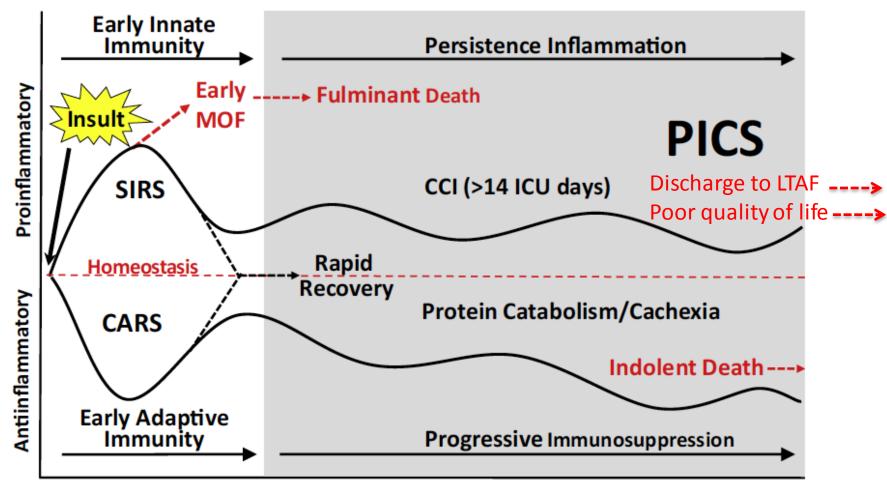
The host response to infection


Nomellini V et al. Shock, 2018

The development of persistent inflammation and immunosuppression


Nomellini V et al. Shock, 2018

The divergent yet similar pathways to develop PICS


Nomellini V. et al Shock, 2018

Phases of critical illness: a guess!

Acute phase				
	Organ dysfunction	n Inflammation	Metabolic status	Days
Early	Severe/progressive Progressive		Catabolic	1-3
Late	Stable/regressive	Persistent/Regre ssive	Catabolic- Anabolic	2-4
Post acute phase				
Recovery	Reconstitution	Resolution of inflammation	Anabolic	> 7
Chronic	Persistent	Persistent Inflammation & Immunosuppression	Catabolic	> 7

The new paradigm of Persistent Inflammation, Immunosuppression and Catabolism Syndrome (PICS)

Time

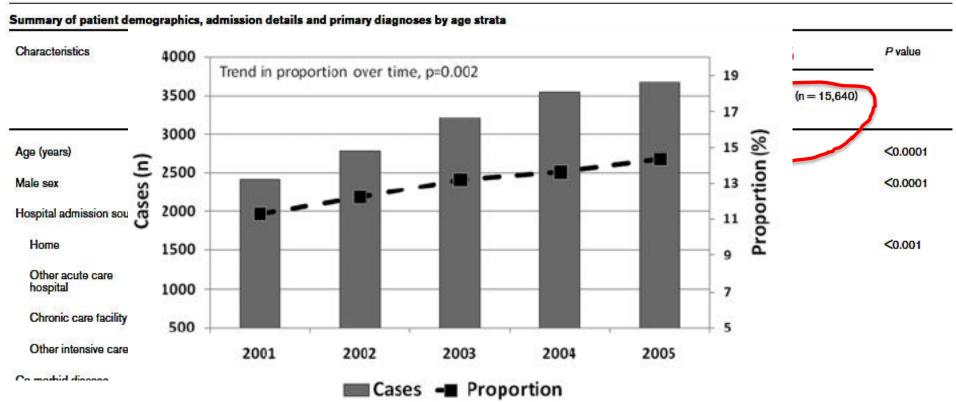
Mira J.C. et al Crit Care Clin, 2017

Markers used to idetify patients with/or a risk of PICS

PICS	Measurement
Critically ill patient	Admission to the ICU >14 d
Persistent inflammation	CRP >50 µg/dL
Persistent immunosuppression	Total lymphocyte count <0.80 \times 10 ⁹ /L
Catabolic state	Serum albumin <3.0 g/dL Prealbumin <10 mg/dL Creatinine height index <80% Weight loss >10% or BMI <18 during hospitalization

Mira J.C. et al Crit Care Clin, 2017

Research


Open Access

Very old patients admitted to intensive care in Australia and New Zealand: a multi-centre cohort analysis

Sean M Bagshaw^{1,2}, Steve AR Webb^{3,4}, Anthony Delaney⁵, Carol George⁶, David Pilcher⁷,

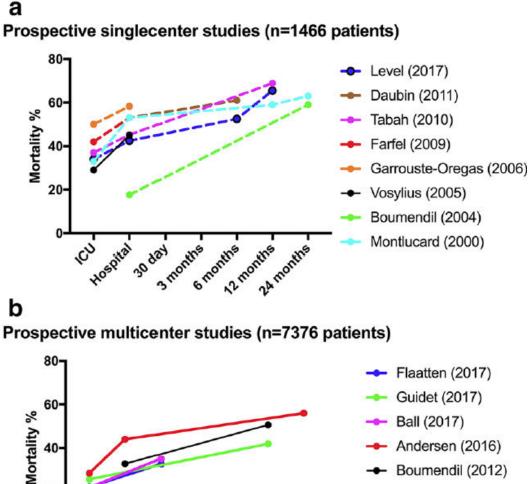

Graeme K Hart¹ and Rinaldo Bellomo⁸

Table 1

Critical Care 2009,

Mortality rates in elderly patients at ICU and hospital discharge

Guidet et al. Ann. Intensive Care

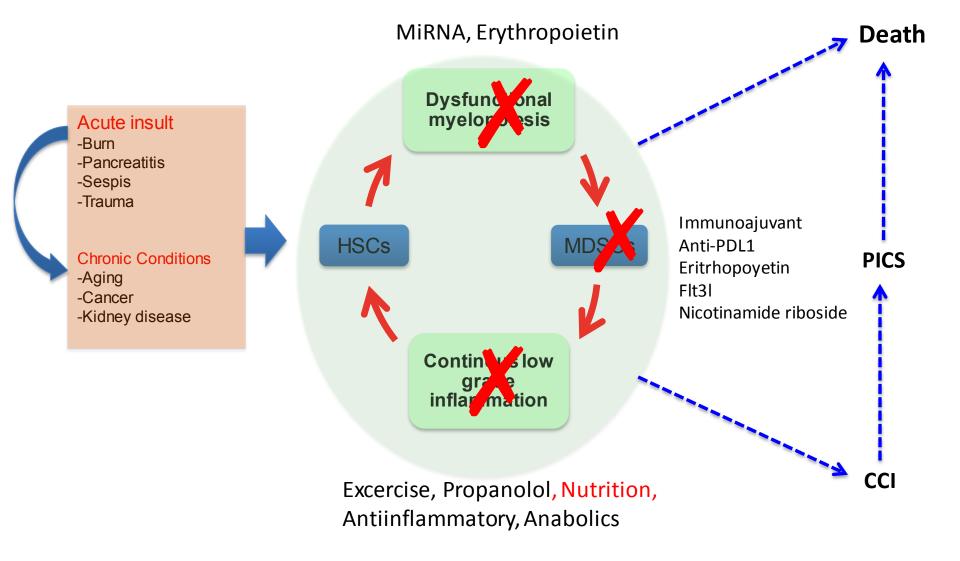
20.

53

Hospital

(2018) 8:114

6 months


12 months

3 months

month

30 024

Can we interrupt this vicious cycle?

Efron P.A. et al. Annual Update In Intensive Care and Emergengy Medicine 2018. Springer

Farmaco-Nutrition

Proteins

Micronutrients

Vitamines

Aminoacids

Fatty Acids

Probiotics

Symbiotics

Antioxidants

Prebiotics

Nucleotides

Vitamin E ingestion improves several immune functions in elderly men and women

Free Radical Research, March 2008; 42(3): 272-280

MONICA DE LA FUENTE¹, ANGEL HERNANZ², NOELIA GUAYERBAS¹, VICTOR MANUEL VICTOR¹, & FRANCISCO ARNALICH³

✓ Contained in the membranes of the immune cells

✓ Strong antioxidant

✓ Enhance immune response + cell mediated immunity

✓ Icreases resistance to respiratory infections in nursing home residents

✓ Dose: 200 mg daily for 3 months is an optimal dose for improving T cell mediate functions in the elderly

ZINC

 Zinc deficiency affects multiple immune cells involved in both innate and adaptive immunity;

- ✓ The elderly often have a low serum Zinc level (inadequate intake, impaired metabolism, infection, inflammation...);
- Evidence from the literature indicates that the elderly might benefit from optimizing serum Zinc level trought adeguate intake;
 Cossack 1989; 45 mg of zinc
- ✓ So far optimal Zinc intake is unknow;

Cossack 1989; Prasad 2003 and 2006; Bao 2003	45 mg of zinc/day for 6 months (zinc sulfonate)
Fortes 1998	25 mg/day for 3 months (Zinc sulfate)
Kahmann 2006; Metz 2007	10 mg of pure zinc (50 mg zinc-aspartate) per day for 48 days

Immunosenescence and nutrition: reviewing clinical evidence on pre-, pro- and synbiotics in aging

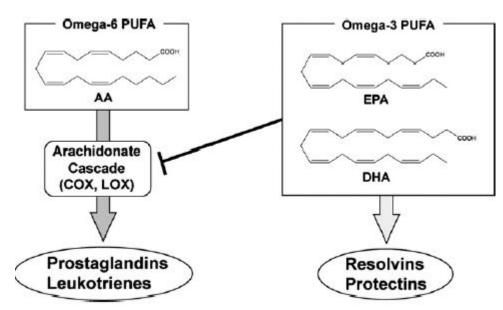
Renata Ramalho^{1,2,3*}

Allergy Immunol, 2017

 Study / Reference
 Design and Participants
 Intervention
 Outcomes
 Results

 Probiotics
 • Resultanticipants
 • Increase in NK cell activity: reduction

The evidence is scarse with reduced number of studies and including small group of partecipants...heterogeneity in design and type of interventions is an important limitation.


Despite this limitation, it seems that pre-, probiotics and synbiotics may represent a nutritional modulation for immunesenescence.

Synbiotics				
Macfarlane <i>et al.</i> , 2013 [116]	 Randomized, placebo- controlled, double-blinded cross-over study 43 volunteers (22 females), 65-83 years-old 	Synergy [(Inulin+Oligofractose) twice a day	 Faecal microbiota Inflammatory markers Biochemical profiles 	 Increase in number of faecal bifidobacteria (Actinobacteria and Firmicutes). Reduction in faecal Proteobacteria. Reduction in TNF-a.
Ouwehand <i>et al.</i> , 2009 [117]	 Randomized, placebo- controlled, double-blinded parallel study 47 volunteers (35 females), > 65 years-old 	• 1 sachet (5-5.5g) <i>L. acidophilus</i> NCFM (2x10 ⁶ CFU)+Lactilol twice a day for 2 weeks • Placebo: 1 sachet (5g) Sucrose twice a day for 2 weeks	 Faecal microbiota Mucosal immunity SCFA production 	Increase in number of faecal Bifidobacterium Increase in spermidine levels Modest increase in PGE2 concentration in faeces

What is the role of ω-3 in inflammation?

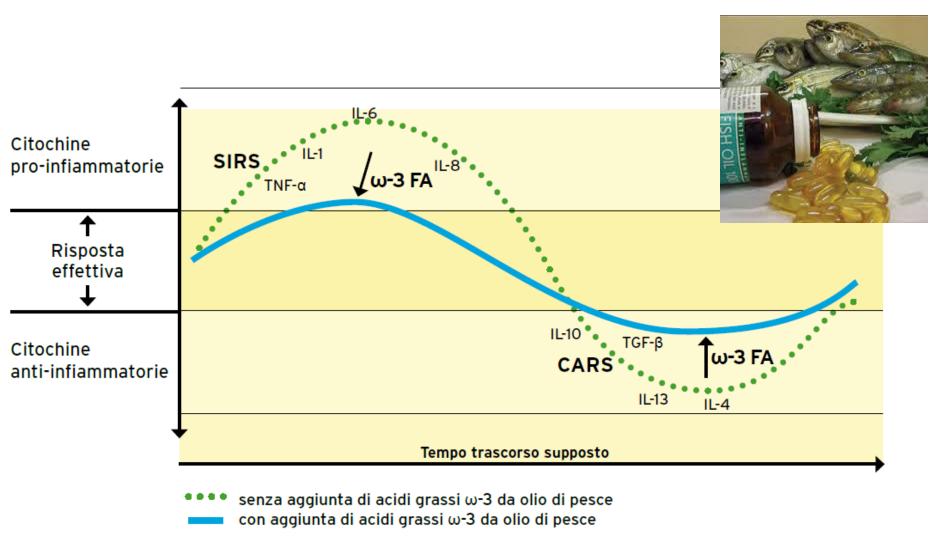
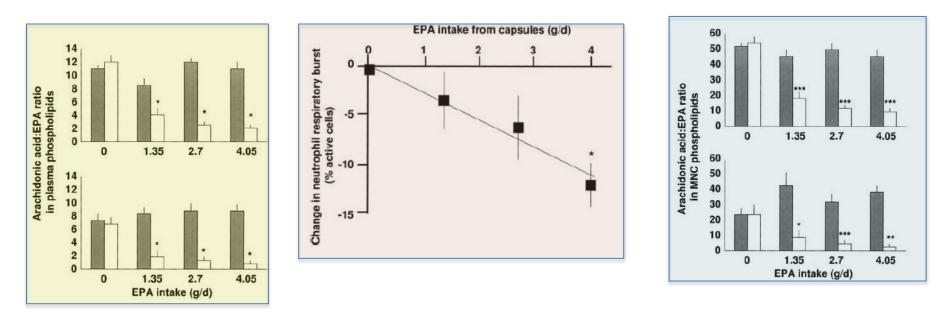


Fig. 1. Possible mechanisms of omega-3 PUFA's anti-inflammatory actions. Omega-3 PUFAs are widely held to act via several possible mechanisms, such as preventing conversion of arachidonic acid (AA) into proinflammatory eicosanoids such as 4series LTs and 2-series PGs via substrate competition, or serving as an alternative substrate to produce less potent 5-series LTs and 3-series PGs and thromboxanes. In addition, EPA and DHA are converted to bioactive metabolites such as resolvins and protectins with anti-inflammatory and pro-resolving properties.


Courtesy of M.Muscaritoli (modified)

Effetto degli ω-3 sulla risposta infiammatoria

SIRS: Sindrome da Risposta Infiammatoria Sistemica; CARS: Risposta Compensatoria Antinfiammatoria

Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: a comparison of young and older men¹⁻³ Dinka Rees et al

Conclusions

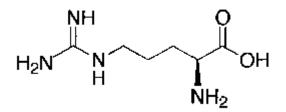
- The elderly can handle dietary long-chain-n-3 PUFAs in different way;
- The host innate immune functions remained unaffected in the elderly even with high intake of long-chain –n3 PUFAs (4.05 g EPA+0.9 g DHA/d);
- Hower at this intake, neutrophil superoxide production in response to E.Coli may be impaired by to 20%;
- An intake of 1.35 g EPA+0.3 gr DHA/d does not affect innate immune function in young or in the elderly

Fatty acids and the elderly

Cellular fatty acids impact on gene expression and act as precursors of prostaglandins, leukotriens, lipoxins and resolvins	Pae 2012	long chain <i>n</i> -3 PUFA (polyunsaturated fatty acids)	Improve cardiovascular, degenerative neurological, inflammatory and autoimmune diseases
	Galli 2009; Calder 2010	n-3 PUFA	Anti-inflammatory properties: inhibition formation of eicosanoids (Thromboxan A2) required for platelet aggregation; inhibition of proinflammatory cytokines IL-1 β , TNF α , and IL-6. Reduction of IL-8, MCP-1, ROS, NOS and adhesion molecules (ICAM-1, VCAM-1 and selectins)
	Meydani 1991	<i>n</i> -3 PUFA (1.68 g EPA and 0.72 g DHA/day) for 3 months	Reduction in cytokine production, inhibition in mitogen-induced PBMC proliferation
	Bechoua 2003	low doses of PUFA (30 mg EPA and 150 mg DHA/day) for 6 weeks	Decrease in lymphocyte proliferation in response to mitogens. Reduction in the glutathione activity
	Bouwens 2009 and 2010	high doses of EPA (1.8 g) and DHA (1.8 g) equivalent to ten portions of oily fish per week for 26 weeks	Decrease plasma levels of free fatty acids and triglycerides, reduction in proinflammatory genes including NF-KB target genes, proinflammatory cytokines and genes involved in eicosanoid synthesis

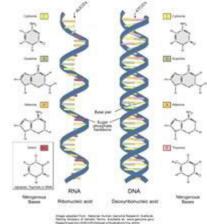
Immunonutrizione

Miscele nutrizionali arricchite con specifici nutrienti attivi sul sistema immunitario, sul metabolismo e sulla struttura e funzione del tratto gastrointestinale.



Diete arricchite con immunonutrienti

	Impact [®] Nestlé	Perative [®] Abbott	Stresson [®] Nutricia	AlitraQ [®] Abbott
Protéines % (g·L ⁻¹)	22 % (56)	20,5 % (66,6)	24 % (75)	21 %(52,5)
Glutamine (g·L ⁻¹)	0	0		15,5
Arginine (g·L ⁻¹)	13.0	6,5	6,7	4,5
Nucléotides (g·L-1)	1.0	0	0	0
Lipides % (g·L ⁻¹)	25 % (28)	25 % (37,4)	30 % (42)	13 % (15,5)
n-3 (g·L ⁻¹)	1,7	1,6	30 mg	0
Antioxydants	C, E, βcarotène, zn, se	A, C, βcarotène, zn, se	éléments- traces,A, C, E,	0
Taurine $(mg \cdot L^{-1})$	0		0	oui
kcal·mL ⁻¹	1		1	1
Osmolalité(mOsm·L ⁻)	375	385	420	575


ARG e funzione immunologica

Aminoacido semiessenziale necessario per:

- Proliferazione dei linfociti (Etron et al. 1991)
- Induzione delle funzioni dei T-linfociti (Etron e Barbul, 1998)
- Sintesi di NO (Nathan e Xle, 1994, Albina 1996)
- Aumento della fagocitosi PMN (Etron e Barbul, 1998)
- Aumento dell'attività delle cellule Natural killer (Etron e Barbul, 1998)

RNA

•Substrato essenziale per la replicazione, la maturazione e la differenziazione cellulare (cellule a rapido turnover: linfociti, Natural Killers, enterociti, macrofagi, che non sono in grado di sintetizzare l'RNA)

- Implicato nella sintesi dei recettori dell'IL-2 e dei macrofagi
- Substrato per la sintesi proteica
- Substrato per il metabolismo e l'energia cellulare (coenzimi: NAD, FAD, ATP, etc..)

Grimble GK, 2001, Hardy G, 2002

ARGININE / N-3 FATTY ACIDS INTERACTION

- ✓ Postoperative acquired arginine-deficient state which leads to substantial immune dysfunction
- Immature myeloid-derived suppressor cells accumulation early after surgery which express Arginase 1 (arginine depleting enzyme)
- ✓ N-3 fatty acids can blunt upregulation of immature cells and Arginase 1
- ✓ Arginine plus Omega-3 supplementation restores
 T-lymphocyte function including IL-2 production

Popovic, J Nutrit 2007

GLUTAMINE enteral supplementation

John C. Hall Geoffrey Dobb Jane Hall Ruth de Sousa Lisa Brennan Rosalie McCauley

A prospective randomized trial of enteral glutamine in critical illness

OBJECTIVE: To assess the influence of enteral glutamine on the incidence of severe sepsis and death in critically ill patients.

DESIGN: This two-armed clinical trial was triple blind (patients, attending staff, research nurse).

SETTING: The 10 bed general ICU at Royal Perth Hospital, Western Australia.

PATIENTS: This trial evaluated 363 patients requiring mechanical ventilation (median APACHE II score=14); of these, 85 had trauma.

INTERVENTION: The intervention solution contained 20 g/l glutamine and the control solution was isojoulic and isonitrogenous.

CONCLUSION: This clinical trial did not support the use of enteral glutamine supplements in similar cohorts of critically ill patients.

Intensive Care Med (2003) 29:1710-1716

REDOXs: Important Answers, Many More Questions Raised!

Jean-Charles Preiser, MD, PhD¹; and Jan Wernerman, MD, PhD²

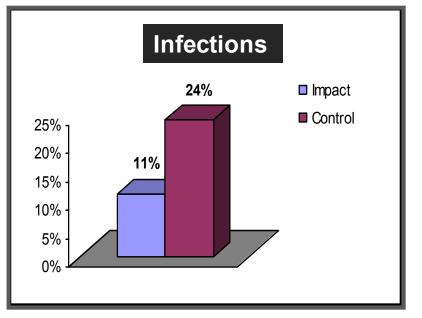
5. A broader unsolved issue is this: Which outcome should we use in the field of (pharmaco)nutrition? In a perfect world, we would select an outcome variable that will be meaningful (ie, an outcome directly influenced by the tested intervention), clinically relevant, and easily measurable. The survival rate is easily measurable and relevant, but how strong is the potential relation with a pharmaconutrient, especially when its mechanism of action is unknown? The infection rate is clearly relevant, and relatively easy to measure, but how can it be directly related to a pharmaconutrient that will influence much more systems than immunity?

In terms of plausibility between glutamine supplementation and these outcome variable, we are left with several different options because of the lack of knowledge of the presumably beneficial mechanism. In general terms, the adequacy of (pharmaco)nutrition could be more precisely reflected by muscle mass or strength and/or functional autonomy, than by crude variables such as mortality or length of stay.

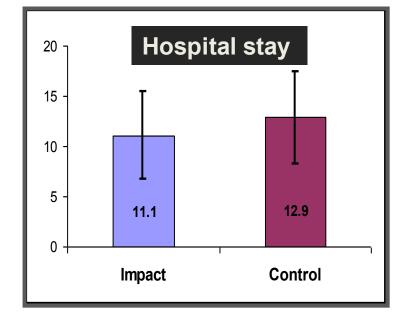
Journal of Parenteral and Enteral Nutrition Volume 37 Number 5 September 2013 566–567 © 2013 American Society for Parenteral and Enteral Nutrition DOI: 10.1177/0148607113495893 jpen.sagepub.com hosted at online.sagepub.com

(S)SAGE

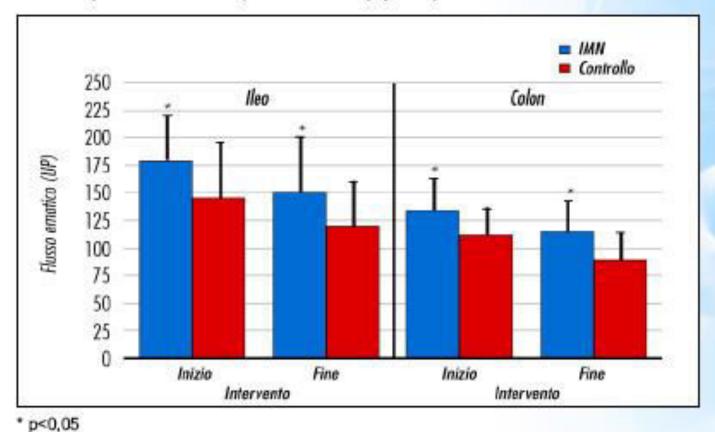
These questions clearly demonstrate that clinical research in nutrition remains in its infancy, at least in the field of critical care medicine. To expand our previous commentary, our cur-


2013: "Glutamine, a Potentially Toxic Nutrient, But Why, How, When, and in Which Patients?

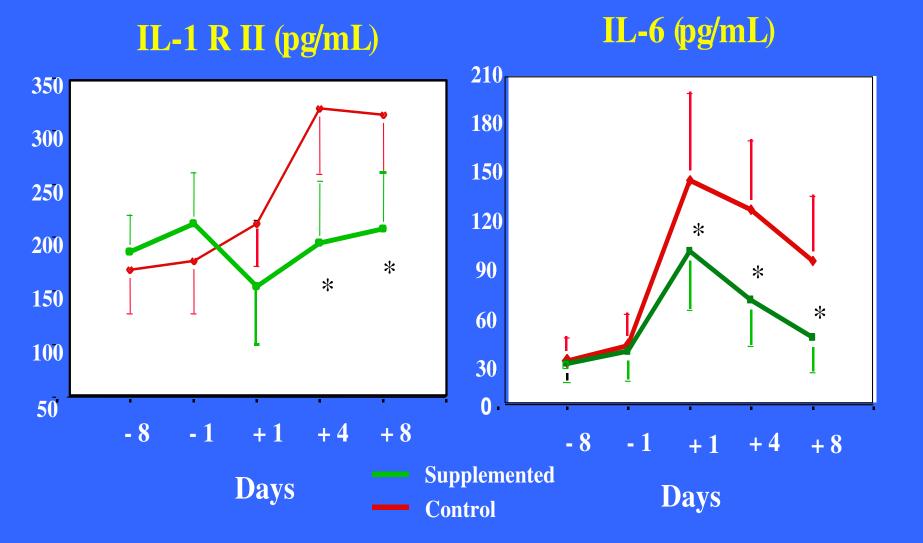
Perioperative Immunonutrition


(cancer patients)

Braga M. et al. Arch Surg, 1999

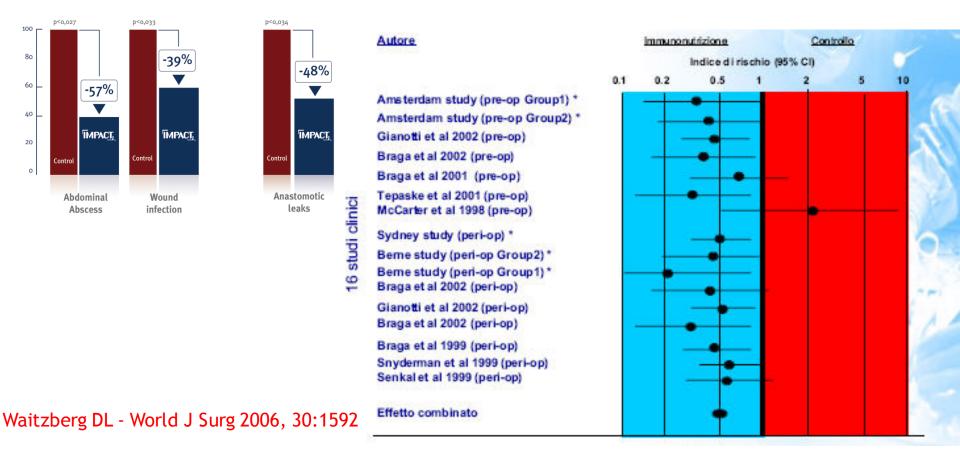

206 patients (colon, stomach, pancreas) randomized trial 11/d Impact[®] or standard formula for 7 days preoperative

p<0.05 *Impact vs. Control*



Risposta metabolica: IMN vs. Std

Microperfusione (Laser-Doppler)


(Braga, Arch Surg, 1996)

Gianotti, JPEN 1999

Postsurgical Infections are Reduced with Specialized Nutrition Support

Dan L. Waitzberg, MD,¹ Hideaki Saito, MD,² Lindsay D. Plank, PhD,³

Conclusions

- Ageing is caracterized by immunosenescence and progressive decline in immunity;
- This complex process affects both innate and immune system
- Nutritional interventions have shown some promising results in targeting some of the impairements of the immune system observed with aging;
- Which molecular pathways of chronic inflammation (inflammaging) can be effectively targeted by a nutritional approach still needs to be determined;

Dieta mediterranea

Characterized by dietary patterns found in olive- growing regions of the Mediterranean: high consumption of olive oil, vegetable, fruits, nuts and cereals. Moderate intake of fish, poultry. Low intake of dairy product, red and processed meat (Gonzalez, 2000).	Osler 1997; Lasheras 2000; Trichopoulou 2003	MD	Association with a significant and substantial reduction in overall mortality
	Carluccio 2003; Cortes 2006; Dell'Agli 2006	Olive oil consumption in patients at risk of coronary heart disease	Reduced expression of ICAM-1, VCAM-1, and E-selectins Decrease plasma concentration of sICAM- 1, sVCAM-1, sE-selectin, IL-6, and CRP
	Tangney 2011 Valls-Pedret 2012; Feart 2009 Scarmeas 2009	MD	Improved cognitive performances in dementia patients. MD associated with slower cognitive decline, reduction of mild cognitive impairment, reduction of neurodegenerative disorders such as Parkinson and Alzheimer
	Azzini 2011	MD	MD associated with down-regulation of CD49d and CD40 expression in monocytes. Reduced plasma expression of inflammatory markers such as sICAM-1, svCAM-1, CRP, IL-6, TNFα, IL-12. Higher levels of anti-inflammatory cytokine IL-10

Larbi A et al. Nutrition as a tool to reverse immnunosenescence? In Immunity and inflammation in health disease, 2018