

Gestione multidisciplinare nel paziente con sindrome dell'intestino corto

Dott.ssa Maria Cappello

Presidente Regionale AIGO UOC Gastroenterologia ed Epatologia Azienda Ospedaliera Universitaria Policlinico Palermo Centro di riferimento regionale CIF adulto

e-SPEN guideline

ESPEN guidelines on chronic intestinal failure in adults

Loris Pironi ^{a, *}, Jann Arends ^b, Federico Bozzetti ^c, Cristina Cuerda ^d, Lyn Gillanders ^e, Palle Bekker Jeppesen ^f, Francisca Joly ^g, Darlene Kelly ^{h, i}, Simon Lal ^j, Michael Staun ^f, Kinga Szczepanek ^k, André Van Gossum ¹, Geert Wanten ^m, Stéphane Michel Schneider ⁿ, the Home Artificial Nutrition & Chronic Intestinal Failure Special Interest Group of ESPEN

La sindrome dell'intestino corto (SBS) è la causa più frequente di Insufficienza Intestinale Cronica

CrossMark

CrossMark

e-SPEN guideline

ESPEN guidelines on chronic intestinal failure in adults

Definition

Intestinal failure is defined as the reduction of gut function below the minimum necessary for the absorption of macronutrients and/or water and electrolytes, such that intravenous supplementation is required to maintain health and/or growth.

The reduction of gut absorptive function that doesn't require any intravenous supplementation to maintain health and/or growth, can be considered as "intestinal insufficiency" (or deficiency).

Short bowel syndrome : classification «A small bowel lenght less than 200 cm»

Short bowel syndrome: etiology

- Mesenteric ischemia
- Arterial thrombosis or embolism
- ✓ Drug abuse
- ✓ Coagulation disorders
- Crohn's disease
- Radiation enteritis
- Post-surgical intraabdominal adhesions
- Post-operative complications

Both massive resections (75%) and repeat resections (25%) can lead to SBS

Short bowel syndrome : sources of prevalence data

- Indirect estimates on home parenteral nutrition utilization (administrative data)
- Web-based registry (Sweden)
- Data from patients'associations (HANA, *Un filo per la Vita, PINNT*)
- Data from scientifical societies (SINPE, ESPEN)

Chronic IF requiring HPN

Incidence

- 2-3 cases/million (Europe)^{1,3}
- 2.3 cases/million (UK, 2007)³
- 3.7 cases/million (UK, 2010)³
- 6.5 cases/million (UK, 2015)⁴

Prevalence

- 0.4/million (Poland)¹
- 5/million (Spain)¹
- 10-18/million (UK)^{3,4}
- 30/million (Denmark)¹
- 5-20/million (Europe)⁵

Chronic IF due to benign disease has been included in the 2013 Orphanet list of rare diseases²

Jeppesen. JPEN J Parenter Enteral Nutr 2014;38(1Suppl):8S–13S
 Orphanet Report Series. Prevalence of rare diseases: Bibliographic data. October 2013
 BANS Report 2011, BAPEN. www.bapen.org.uk
 BANS Report 2016, BAPEN. www.bapen.org.uk
 Pironi L, et al. Clin Nutr 2016;35(2):247–307

Prevalenza della sindrome dell'intestino corto in Italia

From October 2018 to October 2019 106 AIGO members filled the survey form, 36 reported to have patients with short bowel syndrome in follow-up

Short bowel: need of increased awareness

- 5-year outcomes are improving:
- 36% are weaned from TPN
- 39% still on TPN

Overall survival 65% Crohn's disease patients have better prognosis

- Cost of illness high
- High rate of hospitalizations (40% for underlying disease, 30% for HPN complications)
- Strict monitoring
- Hematochemistry every 1-3 months
- Vitamin and trace elements every 6 months
- US every year
- DEXA every year
- Liver biopsy

Multidisciplinary Expert Team

Table 3

Major complications of short bowel syndrome: risk factors, prevention and treatment.

Decreased renal function
Decreased liver function

Diarrhoea the most prevalent symptom (increased motility, malabsorption, secretory, bacterial overgrowth, pancreatic dysfunction)

Short bowel Syndrome: Not only the gut!

Therapy of short bowel syndrome

Home parenteral nutrition (HPN)

Supportive measures

- Antidiarrhoics: loperamide, PPI, octreotide, cholestyramine
- Diet poor in lipids and oxalates
- ONS and/or enteral tube feeding

•Growth Factors

- Growth hormone
- Teduglutide

•Surgery

- Rehabilitative surgery
- Intestinal transplantation

Therapy of short bowel syndrome

Home parenteral nutrition (HPN)

Supportive measures

- Antidiarrhoics: loperamide, PPI, octreotide, cholestyramine
- Diet poor in lipids and oxalates
- ONS and/or enteral tube feeding

•Growth Factors

- Growth hormone
- Teduglutide

•Surgery

- Rehabilitative surgery
- Intestinal transplantation

ESPEN Guideline

ESPEN guideline on home parenteral nutrition

Loris Pironi ^{a, *}, Kurt Boeykens ^b, Federico Bozzetti ^c, Francisca Joly ^d, Stanislaw Klek ^e, Simon Lal ^f, Marek Lichota ^g, Stefan Mühlebach ^h, Andre Van Gossum ⁱ, Geert Wanten ^j, Carolyn Wheatley ^k, Stephan C. Bischoff ¹

Statement 1

For a safe HPN program, the patient and/or the patient's legal representative have to give fully informed consent to the treatment proposed.

Strong consensus (95.7% agreement)

Statement 2

For a safe HPN program, the patient has to be sufficiently metabolically stable outside the acute hospital setting.

Strong consensus (91.3% agreement)

Statement 3

For a safe HPN program, the patients home environment has

to be adequate to safely deliver the therapy proposed.

Strong consensus (95.7% agreement)

Statement 4

For a safe HPN program, the patient and/or the caregiver has to be able to understand and perform the required procedures for the safe administration of therapy.

Strong consensus (95.7% agreement)

Recommendation 6

The patient and/or the caregiver should be trained by a NST to safely infuse the PN with appropriate monitoring and prompt recognition of any complications.

Grade of Recommendation GPP – Strong consensus (100% agreement)

Recommendation 7

The prescribed nutritional admixture and ancillaries required for safe and effective therapy should be delivered by an experienced/certified health care provider.

Grade of Recommendation GPP – Strong consensus (95.7% agreement)

Recommendation 8

The NST should provide appropriate monitoring and treatment for routine and/or emergency care. with annropriate contact details provided to the patient 24 h per day, seven days per week.

Grade of Recommendation GPP – Strong consensus (100% agreement)

The expertise of the NST is crucial: better outcomes and lower costs of care

Clinical Nutrition 39 (2020) 1645-1666

ESPEN Guidelines on Parenteral Nutrition: Home Parenteral Nutrition (HPN) in adult patients

Michael Staun^a, Loris Pironi^b, Federico Bozzetti^c, Janet Baxter^d, Alastair Forbes^e, Francesca Joly^f, Palle Jeppesen^a, Jose Moreno^g, Xavier Hébuterne^h, Marek Pertkiewiczⁱ, Stefan Mühlebach^j, Alan Shenkin^k, André Van Gossum¹

. Nutritional support team for HPN

The expertise of a nutrition support team (NST) is recommended for HPN.

The core NST consists of a physician, nutrition nurse specialist, senior dietician and senior clinical pharmacist. The NST will prepare management protocols to facilitate patient education, help to minimize complications, assist cost-containment, and audit the practice.

For long-term treatment, patients and/or carers are trained to manage parenteral nutrition at home. All patients requiring this complex treatment should have coordinated care from an expert nutrition support team (NST). The NST should provide both physical and psychological or emotional support for all patients who are discharged from hospital with home parenteral nutrition (HPN).

NSTs are usually affiliated to a particular discipline – most commonly gastroenterology or surgery or both. The minimum core composition of the team should include a physician (e.g. gastroenterologist, gastrointestinal surgeon, clinical biochemist), a nutrition nurse specialist, a senior dietician and a senior clinical pharmacist. The tasks of the team should include minimizing the complications of parenteral nutrition by <u>ensuring adherence</u> to management protocols (particularly catheter care) and the management and auditing of complications, including catheter complications (e.g. sepsis and central vein thrombosis) and metabolic complications (such as liver and bone disease and micronutrient imbalance). Where a national registry of HPN patients exists, the team should report to this.

Linea guida pratica ESPEN: nutrizione clinica nell'insufficienza intestinale cronica

Cristina Cuerda^a, Loris Pironi^{b,c}, Jann Arends^d, Federico Bozzetti^e, Lyn Gillanders^f, Palle Bekker Jeppesen^g, Francisca Joly^h, Darlene Kellyⁱ, Simon Lal^j, Michael Staun^g, Kinga Szczepanek^k, André Van Gossum^l, Geert Wanten^m, Stéphane Michel Schneiderⁿ; Stephan C. Bischoff^o; Annarita Eramo^p; Gian Marco Giorgetti^{*P}; and the Home Artificial Nutrition & Chronic Intestinal Failure Special Interest Group of ESPEN.

2021

To provide safely HPN: Use of infusion pumps and adequate Catheters Training of the caregivers Appropriate monitoring An expert nutrition team ESPEN Guideline

ESPEN guideline on home parenteral nutrition

Loris Pironi ^{a, *}, Kurt Boeykens ^b, Federico Bozzetti ^c, Francisca Joly ^d, Stanislaw Klek ^e, Simon Lal ^f, Marek Lichota ^g, Stefan Mühlebach ^h, Andre Van Gossum ⁱ, Geert Wanten ^j, Carolyn Wheatley ^k, Stephan C. Bischoff ¹

7. Which nutritional PN admixture bag should be chosen?

Statement 5

The HPN-admixture shall meet the patient's requirement. Strong consensus (95.7% agreement)

Peronmondation 30

Recommendation 39

Either commercially available ready-to-use admixtures or customized and tailored to the individual patient's requirements admixtures can be used for HPN.

Grade of Recommendation GPP – Strong consensus (95.7% agreement)

Recommendation 40

Customized and tailored HPN admixtures can be prepared either by individual compounding or by ready-to-use prepared and adapted commercial multi-chamber bags, according to the manufacturer instructions and using aseptic admixture technique preferably in a laminar flow cabinet.

Grade of Recommendation GPP – Strong consensus (100% agreement)

HPN monitoring

Frequency Setting Parameter General condition Daily if unstable, twice weekly to once a week if stable Nurse at home Body temperature Patient and/or caregivers Body weight Daily if unstable, twice weekly to once a week if stable In the hospital (outpatient visit) Nurse at home Patient and/or caregivers Body mass index In the hospital (outpatient visit) Monthly Nurse at home Fluid balance The frequency and type of parameters will depend on Nurse at home - Urine output etiology of CIF, and stability of patients Patient and/or caregivers only in case of training program - Stoma output In case of high stool output (end jejunostomy), the - Number or consistency of stools monitoring after the first discharge should be daily, then - Presence of edema twice weekly to once a week when stable Catheter cutaneous exit site Daily Nurse at home Patient and/or caregivers only in case of training program The frequency and type of parameters will depend on Full count blood At home C-reactive protein etiology of the underlying condition requiring HPN and the Verify at each visit Serum glucose stability of patients Serum and urine electrolytes and minerals Weekly or monthly, then every three to four months when (Na, Cl, K, Mg, Ca and P) stable Serum Urea and Creatinine Serum bicarbonates Urine analysis Serum albumin and prealbumin Monthly, then every three to four months when stable At home Verify at each visit Serum liver function tests including INR Monthly, then every three to four months when stable At home Verify at each visit Liver ultrasound Yearly In hospital Every six to twelve months Dosage at home or in the hospital Serum Folate, vitamins B12, A and E Serum ferritin iron. Every three to six months Dosage at home or in the hospital Serum 25-OH Vitamin D Every six to twelve months Dosage at home or in the hospital Every six to twelve months Serum zinc, copper, selenium Dosage in the hospital Serum Manganese Dosage in the hospital Yearly Bone densitometry (DEXA) Every twelve to eighteen months In the hospital

Parameters, frequency (after baseline assessment) and setting of monitoring on patients on HPN.

Review article: the management of long-term parenteral nutrition

M. Dibb, A. Teubner, V. Theis, J. Shaffer & S. Lal

Catheter related complications

- Catheter-related infections (0,14 0,83 episodes/patient –year)
- Catheter occlusion (0,07 episodes/year)
- Central vein thrombosis (0,01-0,03 episodes/year)
- Catheter malfunction

Metabolic complications

- Nephrolitiasis
- Liver disease (IFALD) 19 75%
- Osteopathy

Low quality of life

Fig. 1. Causes of death in patients receiving home parenteral nutrition. CRBSI; Catheter related blood stream infection. IFALD; Intestinal failure associated liver disease.

Five-year survival and causes of death in patients on home parenteral nutrition for severe chronic and benign intestinal failure

Francisca Joly ^{a, *}, Janet Baxter ^b, Michael Staun ^c, Darlene G. Kelly ^d, Yi Lisa Hwa ^d, Olivier Corcos ^a, Antonella De Francesco ^e, Federica Agostini ^f, Stanislaw Klek ^g, Lidia Santarpia ^h, Franco Contaldo ^h, Cora Jonker ⁱ, Geert Wanten ^j, Luisa Chicharro ^k Rosa Burgos ^k, Andre Van Gossum ¹, Cristina Cuerda ^m, Nuria Virgili ⁿ, Loris Pironi ^f, on behalf of the ESPEN HAN CIF group

Year of follow up

Clinical Nutrition xxx (2017) 1-8

SBS: alimentazione orale consentita?

Nutrienti	SBS con colon	SBS senza colon
Carboidrati	 50-60% delle calorie totali Preferire quelli complessi Limitarne gli zuccheri semplici 	 40-50% delle calorie totali Preferire quelli complessi Ridurre al massimo gli zuccheri semplici
Grassi	 20-30% delle calorie totali È indicato l'uso di olio MCT Assicurare un adeguato intake di acidi grassi essenziali 	 30-40% delle calorie totali Assicurare un adeguato intake di acidi grassi essenziali
Proteine	• 20% delle calorie totali	• 20% delle calorie totali
Fibre	• Fibre solubili	Non essenziali
Fluidi	 ORS (o bevande ipotoniche se presente tutto il colon) 	ORS di solito necessarie
Ossalati	Ridurne l'apporto	 Non necessaria alcuna restrizione

Clinical Management Issues 2008; 2(4)

ESPEN guidelines on chronic intestinal failure in adults

37. We suggest the use of enteral tube feeding in combination with oral feeding in patients with CIF with a low-level of HPN dependence (i.e. B1 category of clinical classification) and in whom the expected gain with tube feeding could allow them to wean off HPN.(Grade of evidence: low)

For patients with SBS, who are believed to benefit from enteral feeding, studies suggest that elemental and polymeric diets are similar in terms of nutrient absorption and fluid and electrolyte loss

Therapy of short bowel syndrome

Home parenteral nutrition (HPN)

Supportive measures

- Antidiarrhoics: loperamide, PPI, octreotide, cholestyramine
- Diet poor in lipids and oxalates
- ONS and/or enteral tube feeding

•Growth Factors

- Growth hormone
- Teduglutide

•Surgery

- Rehabilitative surgery
- Intestinal transplantation

Therapy of short bowel syndrome

Home parenteral nutrition (HPN)

Supportive measures

- Antidiarrhoics: loperamide, PPI, octreotide, cholestyramine
- Diet poor in lipids and oxalates
- ONS and/or enteral tube feeding

•Growth Factors

- Growth hormone
- Teduglutide

•Surgery

- Rehabilitative surgery
- Intestinal transplantation

Rehabilitative surgery

Appannaggio di pochi centri di riferimento Più utilizzata in età pediatrica

Surgical procedure for bowel lengthening:

- LILT : Longitudinal intestinal lengthening and tapering
- STEP: serial transverse enteroplasty

Intestinal transplantation

Centers for Medicare and Medicaid-approved indications for intestinal transplantation

Failure of parenteral nutrition

- Impending (total bilirubin 3–6 mg/dL, progressive thrombocytopenia, and progressive splenomegaly) or overt liver failure (portal hypertension, hepatosplenomegaly, hepatic fibrosis, or cirrhosis) because of parenteral nutrition liver injury
- Central venous catheter-related thrombosis of 2 central veins
- Frequent central line sepsis
 - Two episodes per year of systemic sepsis secondary to line infections requiring
 - hospitalization
 - A single episode of line-related fungemia
 - Septic shock or acute respiratory distress syndrome
- Frequent episodes of severe dehydration despite intravenous fluid in addition to parenteral nutrition

High risk of death attributable to the underlying disease

- Desmoid tumors associated with familial adenomatous polyposis
- Congenital mucosal disorders
- Ultrashort bowel syndrome (residual bowel 20 cm in adults)

Intestinal failure with high morbidity or low acceptance of parenteral nutrition

- Frequent hospitalization
- Inability to function
- Patient unwillingness to accept long-term parenteral nutrition

Transplant Type Over Time

Gastroenterol Clin North Am. 2018 June ; 47(2): 341-354.

Intestinal transplantation

Gastroenterol Clin North Am. 2018 June ; 47(2): 341-354.

Therapy of short bowel syndrome

Home parenteral nutrition (HPN)

Supportive measures

- Antidiarrhoics: loperamide, PPI, octreotide, cholestyramine
- Diet poor in lipids and oxalates
- ONS and/or enteral tube feeding

Growth Factors

- Growth hormone
- Teduglutide

Surgery

- Rehabilitative surgery
- Intestinal transplantation

TEDUGLUTIDE as a novel therapeutic agent for SBS

GLP-2 is a peptide produced by enterocytes after food ingestion.

Teduglutide is a dipeptidyilpeptidase degradation resistant GLP-2 analogue

TEDUGLUTIDE : mechanism of action

Response to Teduglutide Histologic

Pre-teduglutide

- 3:1 villus to crypt ratio
- Longest villi measure 1.6 mm in length

1.5 years on teduglutide

- Duodenal mucosa with dilated lymphatics
- 6:1 villus to crypt ratio
- Longest villi measure 3mm in length

Images courtesy of Dr. Mohammad Shokonh-Amiri, UIC Department of Pathology

STEPS PROGRAMME: CLINICAL TRIALS TEDUGLUTIDE

Study ^a	Study ^a Description			
Jeppesen et al ⁴⁸	Phase III clinical trial. SBS males and females ≥ 18 y receiving PN ≥ 3 d/wk for ≥ 12 mo. Randomized to teduglutide 0.05 mg/ kg/d (n = 35), teduglutide 0.10 mg/kg/d (n = 32), or placebo (n = 16) for 6 mo.	 PN volume Responder rate^b Complete PN weaning Intestinal adaptation Safety 		
Jeppesen et al ⁵⁰ (STEPS)	Phase III clinical trial. SBS males and females ≥ 18 y on PN ≥ 3 d/wk for ≥ 12 mo. Previously teduglutide-treated subjects not eligible. Subjects randomized to receive teduglutide 0.05 mg/kg/d (n = 43) or placebo (n = 43) for 6 mo.	 PN volume PN infusion frequency Responder rate Safety 		
Jeppesen et al, ^{42,c} Jeppesen et al, ^{43,c} Fujioka et al ^{45,c} (STEPS-2)	<i>Open-label extension of STEPS.</i> Treatment in STEPS/ STEPS-2: teduglutide/teduglutide 0.05 mg/kg/d (n = 30), placebo/teduglutide 0.05 mg/kg/d (n = 29), or not randomized/teduglutide 0.05 mg/kg/d (n = 6) for 18–24 mo.	 PN volume PN infusion frequency Responder rate Complete PN weaning Safety 		
Iyer et al ^{44,c} (STEPS-3)	<i>Open-label extension of STEPS/STEPS-2.</i> Teduglutide 0.05 mg/kg/d (n = 14), with STEPS/STEPS-3 treatment of teduglutide/teduglutide (n = 5; treatment duration \leq 42 mo), placebo/teduglutide (n = 6; treatment duration \leq 36 mo), or not treated/teduglutide (n = 3; treatment duration \leq 36 mo).	 PN volume PN infusion frequency Complete PN weaning Safety 		

Randomised placebo-controlled trial of teduglutide in reducing parenteral nutrition and/or intravenous fluid requirements in patients with short bowel syndrome

P B Jeppesen,¹ R Gilroy,² M Pertkiewicz,³ J P Allard,⁴ B Messing,⁵ S J O'Keefe⁶

Week 20 maintained at week 24 <20% reduction 20-39% 40-99% 100% reduction in PV reduction in PV reduction in PV in PV Week 16 maintained to week 20 <20% reduction in PV 2 3 0 1 3 20-39% reduction in PV 2 0 4 3 4 5 >40% reduction in PV

The criterion values relied on the timing and reduction from baseline in weekly parenteral volumes (PV). The protocol-defined reduction was set at a minimum of 20% and a maximum of 100%. The timing of onset and the duration of response incorporated the responses at week 16 maintained to week 20 and week 20 maintained at week 24.

Table 3 Summary of results for the graded response score (GRS)

Criterion values for the graded response score

	Criterion value								
	0 <20% reduction in parenteral support	1	2	3	4	5 Off parenteral support			
Placebo	15 (94%)	0 (0%)	1 (6%)	0 (0%)	0 (0%)	0 (0%)			
Teduglutide 0.10 mg/kg/day	24 (75%)	2 (6%)	4 (13%)	0 (0%)	2 (6%)	0 (0%)*			
Teduglutide 0.05 mg/kg/day	19 (54%)	6 (17%)	6 (17%)	0 (0%)	2 (6%)	2 (6%)			

Number (%) of patients within the criterion value groups.

Comparison of 0.10 mg/kg/day of teduglutide vs placebo, p=0.16. Comparison of 0.05 mg/kg/day teduglutide vs placebo, p=0.007. p Value based on a rank ANCOVA adjusting for multiple comparisons in the primary efficacy analysis.

*One patient was weaned off parenteral support at week 24 with a score of 4.

For GRS score, refer to table 1.

Table 1

Randomised placebo-controlled trial of teduglutide in reducing parenteral nutrition and/or intravenous fluid requirements in patients with short bowel syndrome

P B Jeppesen,¹ R Gilroy,² M Pertkiewicz,³ J P Allard,⁴ B Messing,⁵ S J O'Keefe⁶

	Placebo (n = 16)	Teduglutide 0.10 mg/kg/day (n=32)	Teduglutide 0.05 mg/kg/day (n =35)
Subjects with AE, n (%)	15 (94%)	31 (97%)	33 (94%)
Subjects with SAE, n(%)	5 (31%)	11 (34%)	13 (37%)
Subjects with any AE or SAE leading to study discontinuation, n (%)	1* (6%)	2* (6%)	6 (17%)
Event description by system organ cla	ass		
Cardiac disorders	0	0	1
Cardiac failure congestive	0	0	1
Gastrointestinal disorders	0	2	6
Abdominal distension	0	0	1
Constipation	0	0	2
Haemorrhoidal haemorrhage	0	0	1*
Nausea	0	0	1
Pancreatitis	0	1	0
Small intestinal obstruction	0	1*	0
Vomiting	0	0	1
General disorders and administration site conditions	0	0	1
Asthenia	0	0	1
Infections and infestations	1*	1*	0
Catheter sepsis	1*	1*	0
Investigations	0	0	1
Drug level increased	0	0	1
Nervous system disorders	0	0	3*
Coma	0	0	1*
Dysgeusia	0	0	1*
Hypersonnia	0	0	1*

Table 7 Treatment-emerging adverse events (AEs) and serious adverse events (SAEs)

What are the new findings?

- This is the first long-term (24 weeks) randomised placebo-controlled study of teduglutide in patients with short bowel syndrome dependent on parenteral support.
- Teduglutide was safe, well tolerated and led to restoration of intestinal functional and structural integrity through significant intestinotrophic and pro-absorptive effects.

How might it impact on clinical practice in the foreseeable future?

Teduglutide has the potential to reduce the burden often seen with parenteral support in patients with short bowel syndrome with intestinal failure, and could add to the limited clinical treatment amamentarium in treating patients with short bowel syndrome.

Teduglutide Reduces Need for Parenteral Support Among Patients With Short Bowel Syndrome With Intestinal Failure

PALLE B. JEPPESEN,* MAREK PERTKIEWICZ,[‡] BERNARD MESSING,[§] KISHORE IYER,^{||} DOUGLAS L. SEIDNER,[¶] STEPHEN J. D. O'KEEFE,[#] ALASTAIR FORBES,^{**} HARTMUT HEINZE,^{‡‡} and BO JOELSSON^{§§}

Responders were 63% in the teduglutide group and 30% in the placebo group, p=0.002

GASTROENTEROLOGY 2012;143:1473-1481

Single-Center Experience with the Use of Teduglutide in Adult Patients with Short Bowel Syndrome

Median (Range) N M = 7, F = 11Gender Colon in continuity 15 End stoma 3 47 (20-81) Age Time between last 4 yrs (1-13 yrs) bowel resection and initiation of teduglutide Time on PN/IV 36 months (4-96 months) prior to teduglutide Weekly PN/IV 9.9 L (2.7-30 L) volume prior to teduglutide 682 kcal/d PN/IV calories prior to teduglutide (0-1823 kcal/d) 55 cm (6-180 cm) Small bowel length

A retrospective real life analysis from a tertiary referral center All patients exposed to teduglutide From 2009 to 2015 11 patients were totally weaned From parenteral nutrition at a Median times of 10 months (range 3 – 36 months) >50% achieved enteral autonomy after months. 10/11 who achieved enteral Independence had the colon

Journal of Parenteral and Enteral

Nutrition

Volume 42 Number 1

January 2018 225–230 © 2017 American Society for Parenteral and Enteral Nutrition

DOI: 10.1002/jpen.1011 wileyonlinelibrary.com

WILEY

Table 1. Baseline Characteristics of 18 Patients.

GLP-2 analog teduglutide significantly reduces need for parenteral nutrition and stool frequency in a real-life setting

.....in contrast to randomized, controlled studies reduction of parenteral support took longer

early clinical markers of response: increase in stool consistency and reduction of stool frequency as well as sensation of thirst. Top responders patients with colon in continuity

Ther Adv Gastroenterol

2018, Vol. 11: 1-11

Experience with teduglutide treatment for short bowel syndrome in clinical practice

Table 1

Demographic and clinical patient characteristics prior to teduglutide treatment.

Patient characteristics before teduglutide treatment	
Patients exposed to teduglutide (since October 2014), n	27
Female sex, n (%)	14 (52%)
Age, [years]	
Mean ± SD	51 ± 17
Median (range)	53 (21-82)
BMI, [kg/m ²]	
Mean ± SD	21.3 ± 2.6
Median (range)	21.4 (15.3-27.2)
Cause of major intestinal resection, n (%)	
Vascular disease	12 (44%)
Inflammatory bowel disease	4 (15%)
Traumatic injury	3 (11%)
Postsurgical obstructive intestinal adhesions	4 (15%)
Other (volvulus, aganglionosis, perforated sigmoid diverticulitis)	4 (15%)
Duration of chronic IF, [years]	15 Sector A
Mean ± SD	4.3 ± 5.8
Median (range)	2,9 (0.6-23.3)
Patients with colon in continuity, n (%)	21 (78%)
No colon resection, n (%)	5 (24%)
Partial colon resection, n (%)	16 (76%)
Remnant small bowel length in patients with colon in continuity, [cm]	. 30 (616)
Mean ± SD	45 ± 34
Median (range)	46 (0-140)
Unknown, n (%)	3 (14%)
Patients with stoma, n (%)	6 (22%)
Duodenostomy, n (%)	1 (17%)
Jejunostomy, n (%)	1 (17%)
lleostomy, n (%)	3 (50%)
Descendostomy, n (%)	1 (17%)
Remnant small bowel length in patients with stoma, [cm]	Contraction Contract
Mean ± SD	205 ± 173
Median (range)	150 (70-450)
Unknown, n (%)	2 (33%)

21% weaned from HPN79% reduction parenteral volume

Six-month outcomes of teduglutide treatment in adult patients with short bowel syndrome with chronic intestinal failure: A real-world French observational cohort study

F. Joly ^{a, b, *}, D. Seguy ^c, A. Nuzzo ^a, C. Chambrier ^d, P. Beau ^e, F. Poullenot ^f, R. Thibault ^g, L. Armengol Debeir ^h, S. Layec ⁱ, V. Boehm ^a, J. Lallemand ^j, D. Quilliot ^k, S.M. Schneider ¹

IV anarmi		(inc)						
supplementation	$ \begin{array}{c} \leq 1,000 \\ (1) \\ (2) \end{array} \begin{array}{c} 1,001 - & 2 \\ 2,000 \\ (2) \end{array} $		2,001 - 3,000 (3)	>3,000 (4)				
Distribution of patients a	t baseline							
No parenteral support	0		X					
Fluids and electrolytes	6	1	0	0				
Parenteral nutrition	18	14	8	7				
Distribution of patients a	t Week 24	()					
No parenteral support	13	- 1						
Fluids and electrolytes	6	0	0	0				
Parenteral nutrition	20	7	6	2				

Fig. 2. Distribution of the 54 patients at baseline and 24 weeks after teduglutide treatment according to ESPEN clinical classification of intestinal failure. *Results:* At week 24, 85% of patients were responders and 24% had been weaned off PS, with a 51% reduction of PS needs and 1.5 \pm 0.2 days off PS per week. Response to teduglutide was influenced by a higher baseline oral intake (p = 0.02). Weaning off PS was influenced by the presence of colon (p = 0.04), a lower PS volume (p = 0.03) and a higher oral intake (p = 0.01). There were no differences based on age, bowel length or SBS-IF causes.

Univariate and multivariate analysis of risk factors associated with weaning off PS 24 weeks after teduglutide treatment.

	Weaned $n = 13$	Non-weaned $n = 41$	Unadjusted p value	Multivariate p value
Age, years, mean (SD)	55 (13)	51 (16)	0.41	0.06
BMI, kg/m ² , mean (SD)	20 (3)	22(5)	0.11	
Short bowel syndrome causes, n (%)		2550		
Crohn's disease (vs. others)	4(31)	12 (29)	0.91	0.06
Bowel anatomy		5000		
Group 1 (vs. others), n (%)	2(15)	17 (42)	0.11	0.04
Group 2 (vs. others), n (%)	10 (77)	23 (56)	0.18	
Remnant bowel length, cm, mean (SD)	66 (32)	60 (46)	0.70	0.51
Remnant colon length, %, mean (SD)	59 (34)	46 (42)	0.25	
Reverse bowel loop, n (%)	1(8)	2 (5)	0.70	
Intestinal failure features, mean (SD)				
Basal PS volume, mL/day	738 (272)	1867 (1253)	<0.001	0.03
Basal oral intake, kcal/day	2845 (787)	2294 (657)	0.02	0.01
Feces volume, g/day	1207 (920)	1822 (1233)	0.11	
Steatorrhea, g/day	38 (32)	35 (21)	0.73	

Safety and Efficacy of Teduglutide (Gattex) in patients with Crohn's disease and need for parenteral support due to short bowel syndrome associated intestinal failure

Crohn's Di	sease pat	ients on	teduglutide
------------	-----------	----------	-------------

Gender	Age	Disease Duration (years)	Disease Location	Disease Phenotype	# of bowel resections	Ostomy	Medications
Female	46	25	Ileo-colonic	Penetrating	3	Ileostomy	Certolizumab, budesonide, prednisone
Female	37	14	Ileo-colonic	Penetrating	2	Ileostomy	Methotrexate, budesonide, Ustekinumab
Male	56	38	Ileo-colonic	Penetrating	3	None	None
Female	38	17	Ileo-colonic	Penetrating	6	Ileostomy	Adalimumab
Female	41	23	Ileo-colonic	Penetrating	3	Ileostomy	None
Male	45	26	Ileo-colonic	Penetrating	4	Colostomy	Infliximab, thiopurine
Female	60	19	Ileal	Stricturing	3	None	Narcotics
Female	68	46	Ileo-colonic	Stricturing	8	lleostomy	Mesalamine, narcotics
Male	59	45	Ileo-colonic	Stricturing	6	Ileostomy	None
Female	59	35	Ileal	Stricturing	5	None	Thiopurine, prednisone
Female	49	19	Ileo-colonic	Stricturing	1	None	Ustekinumab, narcotics
Female	72	48	Ileo-colonic	Stricturing	4	Ileostomy	Thiopurine
Male	51	31	Ileo-colonic	Stricturing	5	None	Vedolizumab, thiopurine

More than 50% on immunosuppressants

Adverse event profile of Crohn's disease patients on teduglutide

Adverse Event	On Immunosuppression (n=8)	Not on Immunosuppression (n=5)		
Pancreatitis	1	0		
Asymptomatic elevation of lipase and amylase	1	0		
Abdominal Pain	2	0		
Nausea	0	1		
Intermittent obstructive symptoms	0	1		
Catheter related sepsis	3	1		

J Clin Gastroenterol. 2017 July ; 51(6): 508-511.

Endoscopic surveillance

- The development of GI polyps is a safety concern
- Colonoscopy screening is mandatory at the beginning of therapy
- and on follow-up
- In the STEPS 3 study 3 patients developed polyps, in 2 adenomas were diagnosed; in STEPS 2 9 reported polyps, 5 were confirmed for adenoma
- Timing of follow-up colonoscopy not established, the ongoing Clinical Registry will provide indications, one-year colonoscopy is presently recommended

Esperienza Teduglutide in SBS adulto Regione Sicilia

Caso	Età	Sesso	Etiologia	Stomia	Data inizi o NPD	N giorni NPD (esordio)	Data inizio tedugluti de	Peso corpor eo (inizio terapia)	N giorni NPD (ultima visita)	Peso corpore o (ultima visita)
AG	54	F	Complica nze chirurgia	Colosto mia	07/20 16	7/7	12/07/20 18	36,7	0/7	43
PA	36	Μ	Ischemia mesenteri ca	Digiunos tomia	04/20 20	7/7	26/11/20 20	45	7/7	62,5
PF	81	Μ	Ischemia mesenteri ca	lleostom ia	01/20 21	7/7	20/07/20 21	51	3/7	65

Tutti seguiti dal nostro PICC team per manutenzione accessi venosi Tutti hanno ottenuto una riduzione del numero di evacuazioni/ sacchetti stomia

Conclusions (1)

- SBS is a rare but disabling condition with high direct and indirect costs both for patients and caregivers and the health system
- HPN is the mainstay of treatment but achieving parenteral nutrition independency is the ultimate goal of managemen
- The increasing diffusion of home-care facilities for parenteral nutrition and novel technical devices have reduced complications and increased life expectancy
- Surgery has a limited role
- An evidence-based used of supportive measures (PPI, loperamide, diet, ONS) is the basis of standard management.

Conclusions (2)

- Teduglutide represents a novel opportunity to a further reduction of morbidity and possible weaning from HPN
- The STEPS programme has demonstrated efficacy of teduglutide in reducing the volume of parenteral nutrition and in obtaining parenteral independence
- Real life studies have confirmed RCTs results
- Safety seems excellent but further observational registries could offer a better insight especially as far as concerns the occurrence of polyps and the need of endoscopic surveillance
- A better definition of predictors of response is warranted to select patients given the costs of therapy; duration of therapy should also be defined
- Teduglutide has been recently proven effective and safe also in children \rightarrow reimbursed also in pediatric population
- Future fields of research will be the use of teduglutide in patients with active Crohn's disease
- Research ongoing on novel long-acting GLP2 analogues.
- Future perspectives : tissue bioengineering and stem cell therapies.

Multi Disciplinary Team Meeting

Thanks for your attention